Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 7): 180-192, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37405486

ABSTRACT

The resistance of the emerging human pathogen Stenotrophomonas maltophilia to tetracycline antibiotics mainly depends on multidrug efflux pumps and ribosomal protection enzymes. However, the genomes of several strains of this Gram-negative bacterium code for a FAD-dependent monooxygenase (SmTetX) homologous to tetracycline destructases. This protein was recombinantly produced and its structure and function were investigated. Activity assays using SmTetX showed its ability to modify oxytetracycline with a catalytic rate comparable to those of other destructases. SmTetX shares its fold with the tetracycline destructase TetX from Bacteroides thetaiotaomicron; however, its active site possesses an aromatic region that is unique in this enzyme family. A docking study confirmed tetracycline and its analogues to be the preferred binders amongst various classes of antibiotics.


Subject(s)
Oxytetracycline , Stenotrophomonas maltophilia , Humans , Stenotrophomonas maltophilia/genetics , Stenotrophomonas maltophilia/metabolism , Crystallography, X-Ray , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tetracycline/pharmacology , Tetracycline/metabolism , Oxytetracycline/metabolism , Microbial Sensitivity Tests
2.
FEMS Microbiol Rev ; 47(6)2023 11 01.
Article in English | MEDLINE | ID: mdl-36549665

ABSTRACT

Rifampicin is a clinically important antibiotic that binds to, and blocks the DNA/RNA channel of bacterial RNA polymerase (RNAP). Stalled, nonfunctional RNAPs can be removed from DNA by HelD proteins; this is important for maintenance of genome integrity. Recently, it was reported that HelD proteins from high G+C Actinobacteria, called HelR, are able to dissociate rifampicin-stalled RNAPs from DNA and provide rifampicin resistance. This is achieved by the ability of HelR proteins to dissociate rifampicin from RNAP. The HelR-mediated mechanism of rifampicin resistance is discussed here, and the roles of HelD/HelR in the transcriptional cycle are outlined. Moreover, the possibility that the structurally similar HelD proteins from low G+C Firmicutes may be also involved in rifampicin resistance is explored. Finally, the discovery of the involvement of HelR in rifampicin resistance provides a blueprint for analogous studies to reveal novel mechanisms of bacterial antibiotic resistance.


Subject(s)
Bacteria , Rifampin , Rifampin/pharmacology , Bacteria/genetics , Bacteria/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , DNA
3.
Acta Crystallogr D Struct Biol ; 78(Pt 10): 1194-1209, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36189740

ABSTRACT

S1 nuclease from Aspergillus oryzae is a single-strand-specific nuclease from the S1/P1 family that is utilized in biochemistry and biotechnology. S1 nuclease is active on both RNA and DNA but with differing catalytic efficiencies. This study clarifies its catalytic properties using a thorough comparison of differences in the binding of RNA and DNA in the active site of S1 nuclease based on X-ray structures, including two newly solved complexes of S1 nuclease with the products of RNA cleavage at atomic resolution. Conclusions derived from this comparison are valid for the whole S1/P1 nuclease family. For proper model building and refinement, multiple lattice-translocation defects present in the measured diffraction data needed to be solved. Two different approaches were tested and compared. Correction of the measured intensities proved to be superior to the use of the dislocation model of asymmetric units with partial occupancy of individual chains. As the crystals suffered from multiple lattice translocations, equations for their correction were derived de novo. The presented approach to the correction of multiple lattice-translocation defects may help to solve similar problems in the field of protein X-ray crystallography.


Subject(s)
Aspergillus oryzae , RNA , Aspergillus oryzae/genetics , Aspergillus oryzae/metabolism , Catalytic Domain , DNA , Endonucleases/chemistry , RNA/metabolism
4.
Nat Commun ; 13(1): 5022, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36028489

ABSTRACT

Signaling by the human C-type lectin-like receptor, natural killer (NK) cell inhibitory receptor NKR-P1, has a critical role in many immune-related diseases and cancer. C-type lectin-like receptors have weak affinities to their ligands; therefore, setting up a comprehensive model of NKR-P1-LLT1 interactions that considers the natural state of the receptor on the cell surface is necessary to understand its functions. Here we report the crystal structures of the NKR-P1 and NKR-P1:LLT1 complexes, which provides evidence that NKR-P1 forms homodimers in an unexpected arrangement to enable LLT1 binding in two modes, bridging two LLT1 molecules. These interaction clusters are suggestive of an inhibitory immune synapse. By observing the formation of these clusters in solution using SEC-SAXS analysis, by dSTORM super-resolution microscopy on the cell surface, and by following their role in receptor signaling with freshly isolated NK cells, we show that only the ligation of both LLT1 binding interfaces leads to effective NKR-P1 inhibitory signaling. In summary, our findings collectively support a model of NKR-P1:LLT1 clustering, which allows the interacting proteins to overcome weak ligand-receptor affinity and to trigger signal transduction upon cellular contact in the immune synapse.


Subject(s)
Killer Cells, Natural , Receptors, Cell Surface , Antigens, Surface , Cluster Analysis , Humans , Lectins, C-Type , Ligands , NK Cell Lectin-Like Receptor Subfamily B , Scattering, Small Angle , Synapses , X-Ray Diffraction
5.
Biotechnol Adv ; 58: 107944, 2022 09.
Article in English | MEDLINE | ID: mdl-35301089

ABSTRACT

The C-type lectin-like fold (CTL fold) is a building block of many proteins, including saccharide-binding lectins, natural killer cell receptors, macrophage mannose receptor, selectins, collectins, snake venoms and others. Some are important players in innate immunity and are involved in the first-line response to virally infected cells or cancer cells, some play a role in antimicrobial defense, and some are potential targets for fight against problems connected with allergies, obesity, and autoimmunity. The structure of a CTL domain typically contains two α-helices, two small ß-sheets and a long surface loop, with two or three disulfide bridges stabilizing the structure. This small domain is often involved in interactions with a target molecule, however, utilizing varied parts of the domain surface, with or without structural modifications. More than 500 three-dimensional structures of CTL fold-containing proteins are available in the Protein Data Bank, including a significant number of complexes with their key interacting partners (protein:protein complexes). The amount of available structural data enables a detailed analysis of the rules of interaction patterns utilized in activation, inhibition, attachment, and other pathways or functionalities. Interpretation of known CTL receptor structures and all other CTL-containing proteins and complexes with described three-dimensional structures, complemented with sequence/structure/interaction correlation analysis, offers a comprehensive view of the rules of interaction patterns of the CTL fold. The results are of value for prediction of interaction behavior of so far not understood CTL-containing proteins and development of new protein binders based on this fold, with applications in biomedicine or biotechnologies. It follows from the available structural data that almost the whole surface of the CTL fold is utilized in protein:protein interactions, with the heaviest frequency of utilization in the canonical interaction region. The individual categories of interactions differ in the interface buildup strategy. The strongest CTL binders rely on interfaces with large interaction area, presence of hydrophobic core, or high surface complementarity. The typical interaction surfaces of the fold are not conserved in amino acid sequence and can be utilized in design of new binders for biotechnological applications.


Subject(s)
Lectins, C-Type , Amino Acid Sequence , Lectins, C-Type/chemistry , Lectins, C-Type/metabolism
6.
Molecules ; 26(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34641521

ABSTRACT

Commensal bacterium Clostridium paraputrificum J4 produces several extracellular chitinolytic enzymes including a 62 kDa chitinase Chit62J4 active toward 4-nitrophenyl N,N'-diacetyl-ß-d-chitobioside (pNGG). We characterized the crude enzyme from bacterial culture fluid, recombinant enzyme rChit62J4, and its catalytic domain rChit62J4cat. This major chitinase, securing nutrition of the bacterium in the human intestinal tract when supplied with chitin, has a pH optimum of 5.5 and processes pNGG with Km = 0.24 mM and kcat = 30.0 s-1. Sequence comparison of the amino acid sequence of Chit62J4, determined during bacterial genome sequencing, characterizes the enzyme as a family 18 glycosyl hydrolase with a four-domain structure. The catalytic domain has the typical TIM barrel structure and the accessory domains-2x Fn3/Big3 and a carbohydrate binding module-that likely supports enzyme activity on chitin fibers. The catalytic domain is highly homologous to a single-domain chitinase of Bacillus cereus NCTU2. However, the catalytic profiles significantly differ between the two enzymes despite almost identical catalytic sites. The shift of pI and pH optimum of the commensal enzyme toward acidic values compared to the soil bacterium is the likely environmental adaptation that provides C. paraputrificum J4 a competitive advantage over other commensal bacteria.


Subject(s)
Bacterial Proteins/metabolism , Chitin/metabolism , Chitinases/metabolism , Clostridium/metabolism , Bacterial Proteins/genetics , Catalytic Domain , Chitinases/chemistry , Chitinases/genetics , Clostridium/growth & development , Clostridium/isolation & purification , Gastrointestinal Microbiome , Humans , Hydrogen-Ion Concentration , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
Acta Crystallogr D Struct Biol ; 77(Pt 7): 980-981, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34196623

ABSTRACT

The synchrotron facilities used in collecting the data for the article by Svecová et al. [(2021), Acta Cryst. D77, 755-775] are acknowledged.

8.
Acta Crystallogr D Struct Biol ; 77(Pt 6): 755-775, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34076590

ABSTRACT

The FAD-dependent oxidoreductase from Chaetomium thermophilum (CtFDO) is a novel thermostable glycoprotein from the glucose-methanol-choline (GMC) oxidoreductase superfamily. However, CtFDO shows no activity toward the typical substrates of the family and high-throughput screening with around 1000 compounds did not yield any strongly reacting substrate. Therefore, protein crystallography, including crystallographic fragment screening, with 42 fragments and 37 other compounds was used to describe the ligand-binding sites of CtFDO and to characterize the nature of its substrate. The structure of CtFDO reveals an unusually wide-open solvent-accessible active-site pocket with a unique His-Ser amino-acid pair putatively involved in enzyme catalysis. A series of six crystal structures of CtFDO complexes revealed five different subsites for the binding of aryl moieties inside the active-site pocket and conformational flexibility of the interacting amino acids when adapting to a particular ligand. The protein is capable of binding complex polyaromatic substrates of molecular weight greater than 500 Da.


Subject(s)
Chaetomium/enzymology , Fungal Proteins/chemistry , Models, Molecular , Oxidoreductases/chemistry , Binding Sites , Flavin-Adenine Dinucleotide/chemistry , Protein Conformation
9.
Nat Commun ; 11(1): 6419, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33339823

ABSTRACT

RNA synthesis is central to life, and RNA polymerase (RNAP) depends on accessory factors for recovery from stalled states and adaptation to environmental changes. Here, we investigated the mechanism by which a helicase-like factor HelD recycles RNAP. We report a cryo-EM structure of a complex between the Mycobacterium smegmatis RNAP and HelD. The crescent-shaped HelD simultaneously penetrates deep into two RNAP channels that are responsible for nucleic acids binding and substrate delivery to the active site, thereby locking RNAP in an inactive state. We show that HelD prevents non-specific interactions between RNAP and DNA and dissociates stalled transcription elongation complexes. The liberated RNAP can either stay dormant, sequestered by HelD, or upon HelD release, restart transcription. Our results provide insights into the architecture and regulation of the highly medically-relevant mycobacterial transcription machinery and define HelD as a clearing factor that releases RNAP from nonfunctional complexes with nucleic acids.


Subject(s)
Bacterial Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , Mycobacterium smegmatis/enzymology , Nucleic Acids/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Catalytic Domain , Cryoelectron Microscopy , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/ultrastructure , Models, Molecular , Protein Binding , Protein Domains
10.
Cancers (Basel) ; 12(7)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708305

ABSTRACT

NKp30 is one of the main human natural killer (NK) cell activating receptors used in directed immunotherapy. The oligomerization of the NKp30 ligand binding domain depends on the length of the C-terminal stalk region, but our structural knowledge of NKp30 oligomerization and its role in signal transduction remains limited. Moreover, ligand binding of NKp30 is affected by the presence and type of N-glycosylation. In this study, we assessed whether NKp30 oligomerization depends on its N-glycosylation. Our results show that NKp30 forms oligomers when expressed in HEK293S GnTI- cell lines with simple N-glycans. However, NKp30 was detected only as monomers after enzymatic deglycosylation. Furthermore, we characterized the interaction between NKp30 and its best-studied cognate ligand, B7-H6, with respect to glycosylation and oligomerization, and we solved the crystal structure of this complex with glycosylated NKp30, revealing a new glycosylation-induced mode of NKp30 dimerization. Overall, this study provides new insights into the structural basis of NKp30 oligomerization and explains how the stalk region and glycosylation of NKp30 affect its ligand affinity. This furthers our understanding of the molecular mechanisms involved in NK cell activation, which is crucial for the successful design of novel NK cell-based targeted immunotherapeutics.

11.
J Biol Chem ; 295(6): 1587-1597, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31914416

ABSTRACT

The heme-based oxygen sensor protein AfGcHK is a globin-coupled histidine kinase in the soil bacterium Anaeromyxobacter sp. Fw109-5. Its C-terminal functional domain exhibits autophosphorylation activity induced by oxygen binding to the heme-Fe(II) complex located in the oxygen-sensing N-terminal globin domain. A detailed understanding of the signal transduction mechanisms in heme-containing sensor proteins remains elusive. Here, we investigated the role of the globin domain's dimerization interface in signal transduction in AfGcHK. We present a crystal structure of a monomeric imidazole-bound AfGcHK globin domain at 1.8 Å resolution, revealing that the helices of the WT globin dimer are under tension and suggesting that Tyr-15 plays a role in both this tension and the globin domain's dimerization. Biophysical experiments revealed that whereas the isolated WT globin domain is dimeric in solution, the Y15A and Y15G variants in which Tyr-15 is replaced with Ala or Gly, respectively, are monomeric. Additionally, we found that although the dimerization of the full-length protein is preserved via the kinase domain dimerization interface in all variants, full-length AfGcHK variants bearing the Y15A or Y15G substitutions lack enzymatic activity. The combined structural and biophysical results presented here indicate that Tyr-15 plays a key role in the dimerization of the globin domain of AfGcHK and that globin domain dimerization is essential for internal signal transduction and autophosphorylation in this protein. These findings provide critical insights into the signal transduction mechanism of the histidine kinase AfGcHK from Anaeromyxobacter.


Subject(s)
Bacterial Proteins/chemistry , Globins/chemistry , Histidine Kinase/chemistry , Myxococcales/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Globins/metabolism , Histidine Kinase/metabolism , Models, Molecular , Myxococcales/metabolism , Phosphorylation , Protein Conformation , Protein Conformation, alpha-Helical , Protein Domains , Protein Multimerization , Signal Transduction
12.
Sci Rep ; 9(1): 13700, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31548583

ABSTRACT

Unlike any protein studied so far, the active site of bilirubin oxidase from Myrothecium verrucaria contains a unique type of covalent link between tryptophan and histidine side chains. The role of this post-translational modification in substrate binding and oxidation is not sufficiently understood. Our structural and mutational studies provide evidence that this Trp396-His398 adduct modifies T1 copper coordination and is an important part of the substrate binding and oxidation site. The presence of the adduct is crucial for oxidation of substituted phenols and it substantially influences the rate of oxidation of bilirubin. Additionally, we bring the first structure of bilirubin oxidase in complex with one of its products, ferricyanide ion, interacting with the modified tryptophan side chain, Arg356 and the active site-forming loop 393-398. The results imply that structurally and chemically distinct types of substrates, including bilirubin, utilize the Trp-His adduct mainly for binding and to a smaller extent for electron transfer.


Subject(s)
Bilirubin/metabolism , Models, Molecular , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Binding Sites , Electron Transport/physiology , Hypocreales/metabolism , Oxidation-Reduction , Protein Binding/physiology , Protein Conformation
13.
FEBS Lett ; 593(9): 996-1005, 2019 05.
Article in English | MEDLINE | ID: mdl-30972737

ABSTRACT

The HelD is a helicase-like protein binding to Bacillus subtilis RNA polymerase (RNAP), stimulating transcription in an ATP-dependent manner. Here, our small angle X-ray scattering data bring the first insights into the HelD structure: HelD is compact in shape and undergoes a conformational change upon substrate analog binding. Furthermore, the HelD domain structure is delineated, and a partial model of HelD is presented. In addition, the unique N-terminal domain of HelD is characterized as essential for its transcription-related function but not for ATPase activity, DNA binding, or binding to RNAP. The study provides a topological basis for further studies of the role of HelD in transcription.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , Models, Molecular , Protein Binding , Protein Domains , Scattering, Small Angle , X-Ray Diffraction
14.
J Biol Chem ; 292(51): 20921-20935, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29092908

ABSTRACT

The heme-based oxygen sensor histidine kinase AfGcHK is part of a two-component signal transduction system in bacteria. O2 binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His183 in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH- and -CN- complexes of AfGcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN- and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length AfGcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of AfGcHK. We conclude that AfGcHK functions as an ensemble of molecules sampling at least two conformational states.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Heme/chemistry , Histidine Kinase/chemistry , Histidine Kinase/metabolism , Crystallography, X-Ray , Deuterium Exchange Measurement , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Mass Spectrometry , Models, Molecular , Myxococcales/metabolism , Oxidation-Reduction , Oxygen/metabolism , Phosphorylation , Protein Domains , Protein Structure, Quaternary , Signal Transduction
15.
PLoS One ; 11(12): e0168832, 2016.
Article in English | MEDLINE | ID: mdl-28036383

ABSTRACT

The single-strand-specific S1 nuclease from Aspergillus oryzae is an archetypal enzyme of the S1-P1 family of nucleases with a widespread use for biochemical analyses of nucleic acids. We present the first X-ray structure of this nuclease along with a thorough analysis of the reaction and inhibition mechanisms and of its properties responsible for identification and binding of ligands. Seven structures of S1 nuclease, six of which are complexes with products and inhibitors, and characterization of catalytic properties of a wild type and mutants reveal unknown attributes of the S1-P1 family. The active site can bind phosphate, nucleosides, and nucleotides in several distinguished ways. The nucleoside binding site accepts bases in two binding modes-shallow and deep. It can also undergo remodeling and so adapt to different ligands. The amino acid residue Asp65 is critical for activity while Asn154 secures interaction with the sugar moiety, and Lys68 is involved in interactions with the phosphate and sugar moieties of ligands. An additional nucleobase binding site was identified on the surface, which explains the absence of the Tyr site known from P1 nuclease. For the first time ternary complexes with ligands enable modeling of ssDNA binding in the active site cleft. Interpretation of the results in the context of the whole S1-P1 nuclease family significantly broadens our knowledge regarding ligand interaction modes and the strategies of adjustment of the enzyme surface and binding sites to achieve particular specificity.


Subject(s)
Aspergillus oryzae/enzymology , Aspergillus oryzae/metabolism , Fungal Proteins/metabolism , Single-Strand Specific DNA and RNA Endonucleases/metabolism , Amino Acid Sequence , Amino Acids/metabolism , Binding Sites/physiology , Catalysis , Catalytic Domain/physiology , Kinetics , Sequence Alignment , Substrate Specificity
16.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 11): 1408-15, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26527269

ABSTRACT

Tomato multifunctional nuclease TBN1 belongs to the type I nuclease family, which plays an important role in apoptotic processes and cell senescence in plants. The newly solved structure of the N211D mutant is reported. Although the main crystal-packing motif (the formation of superhelices) is conserved, the details differ among the known structures. A phosphate ion was localized in the active site of the enzyme. The binding of the surface loop to the active centre is stabilized by the phosphate ion, which correlates with the observed aggregation of TBN1 in phosphate buffer. The conserved binding of the surface loop to the active centre suggests biological relevance of the contact in a regulatory function or in the formation of oligomers.


Subject(s)
Endodeoxyribonucleases/metabolism , Multienzyme Complexes/metabolism , Phosphates/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/enzymology , Amino Acid Sequence , Binding Sites/physiology , Crystallization , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/genetics , Solanum lycopersicum/genetics , Molecular Sequence Data , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Structure, Secondary
17.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 3): 578-91, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25760607

ABSTRACT

Human LLT1 is a C-type lectin-like ligand of NKR-P1 (CD161, gene KLRB1), a C-type lectin-like receptor of natural killer cells. Using X-ray diffraction, the first experimental structures of human LLT1 were determined. Four structures of LLT1 under various conditions were determined: monomeric, dimeric deglycosylated after the first N-acetylglucosamine unit in two forms and hexameric with homogeneous GlcNAc2Man5 glycosylation. The dimeric form follows the classical dimerization mode of human CD69. The monomeric form keeps the same fold with the exception of the position of an outer part of the long loop region. The hexamer of glycosylated LLT1 consists of three classical dimers. The hexameric packing may indicate a possible mode of interaction of C-type lectin-like proteins in the glycosylated form.


Subject(s)
Lectins, C-Type/chemistry , Protein Multimerization , Receptors, Cell Surface/chemistry , Glycosylation , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , NK Cell Lectin-Like Receptor Subfamily B/chemistry , NK Cell Lectin-Like Receptor Subfamily B/genetics , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Protein Structure, Quaternary , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism
18.
Article in English | MEDLINE | ID: mdl-23545636

ABSTRACT

The bacterial enzyme organophosphorus acid anhydrolase (OPAA) is able to catalyze the hydrolysis of both proline dipeptides (Xaa-Pro) and several types of organophosphate (OP) compounds. The full three-dimensional structure of the manganese-dependent OPAA enzyme is presented for the first time. This enzyme, which was originally isolated from the marine bacterium Alteromonas macleodii, was prepared recombinantly in Escherichia coli. The crystal structure was determined at 1.8 Å resolution in space group C2, with unit-cell parameters a = 133.8, b = 49.2, c = 97.3 Å, ß = 125.0°. The enzyme forms dimers and their existence in solution was confirmed by dynamic light scattering and size-exclusion chromatography. The enzyme shares the pita-bread fold of its C-terminal domain with related prolidases. The binuclear manganese centre is located in the active site within the pita-bread domain. Moreover, an Ni(2+) ion from purification was localized according to anomalous signal. This study presents the full structure of this enzyme with complete surroundings of the active site and provides a critical analysis of its relationship to prolidases.


Subject(s)
Alteromonas/enzymology , Aryldialkylphosphatase/chemistry , Dipeptidases/chemistry , Amino Acid Sequence , Humans , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Alignment
19.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 2): 213-26, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23385457

ABSTRACT

Type I plant nucleases play an important role in apoptotic processes and cell senescence. Recently, they have also been indicated to be potent anticancer agents in in vivo studies. The first structure of tomato nuclease I (TBN1) has been determined, its oligomerization and activity profiles have been analyzed and its unexpected activity towards phospholipids has been discovered, and conclusions are drawn regarding its catalytic mechanism. The structure-solution process required X-ray diffraction data from two crystal forms. The first form was used for phase determination; the second form was used for model building and refinement. TBN1 is mainly α-helical and is stabilized by four disulfide bridges. Three observed oligosaccharides are crucial for its stability and solubility. The active site is localized at the bottom of the positively charged groove and contains a zinc cluster that is essential for enzymatic activity. An equilibrium between monomers, dimers and higher oligomers of TBN1 was observed in solution. Principles of the reaction mechanism of the phosphodiesterase activity are suggested, with central roles for the zinc cluster, the nucleobase-binding pocket (Phe-site) and Asp70, Arg73 and Asn167. Based on the distribution of surface residues, possible binding sites for dsDNA and other nucleic acids with secondary structure were identified. The phospholipase activity of TBN1, which is reported for the first time for a nuclease, significantly broadens the substrate promiscuity of the enzyme, and the resulting release of diacylglycerol, which is an important second messenger, can be related to the role of TBN1 in apoptosis.


Subject(s)
Deoxyribonucleases/chemistry , Multienzyme Complexes/chemistry , Phospholipases/chemistry , Plant Proteins/chemistry , Solanum lycopersicum/enzymology , Animals , Catalytic Domain , Crystallization , Crystallography, X-Ray , Deoxyribonucleases/metabolism , Humans , Mice , Multienzyme Complexes/metabolism , Phospholipases/metabolism , Plant Proteins/metabolism , Structure-Activity Relationship
20.
J Immunol ; 189(10): 4881-9, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23071282

ABSTRACT

Interactions between C-type lectin-like NK cell receptors and their protein ligands form one of the key recognition mechanisms of the innate immune system that is involved in the elimination of cells that have been malignantly transformed, virally infected, or stressed by chemotherapy or other factors. We determined an x-ray structure for the extracellular domain of mouse C-type lectin related (Clr) protein g, a ligand for the activation receptor NKR-P1F. Clr-g forms dimers in the crystal structure resembling those of human CD69. This newly reported structure, together with the previously determined structure of mouse receptor NKR-P1A, allowed the modeling and calculations of electrostatic profiles for other closely related receptors and ligands. Despite the high similarity among Clr-g, Clr-b, and human CD69, these molecules have fundamentally different electrostatics, with distinct polarization of Clr-g. The electrostatic profile of NKR-P1F is complementary to that of Clr-g, which suggests a plausible interaction mechanism based on contacts between surface sites of opposite potential.


Subject(s)
Lectins, C-Type/chemistry , Membrane Proteins/chemistry , Receptors, Immunologic/chemistry , Animals , Antigens, CD/chemistry , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/chemistry , Antigens, Differentiation, T-Lymphocyte/immunology , Crystallography, X-Ray , Humans , Lectins, C-Type/immunology , Ligands , Membrane Proteins/immunology , Mice , Protein Structure, Tertiary , Receptors, Immunologic/immunology , Static Electricity , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...