Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Rev Camb Philos Soc ; 96(5): 2321-2332, 2021 10.
Article in English | MEDLINE | ID: mdl-34132477

ABSTRACT

Cell differentiation is a process that must be precisely regulated for the maintenance of tissue homeostasis. Differentiation towards a multiciliated cell fate is characterized by well-defined stages, where a transcriptional cascade is activated leading to the formation of multiple centrioles and cilia. Centrioles migrate and dock to the apical cell surface and, acting as basal bodies, give rise to multiple motile cilia. The concerted movement of cilia ensures directional fluid flow across epithelia and defects either in their number or structure can lead to disease phenotypes. Micro-RNAs (miRNAs; miRs) are small, non-coding RNA molecules that play an important role in post-transcriptional regulation of gene expression. miR-34b/c and miR-449a/b/c specifically function throughout the differentiation of multiciliated cells, fine-tuning the expression of many different centriole- and cilia-related genes. They strictly regulate the expression levels of genes that are required both for commitment towards the multiciliated cell fate (e.g. Notch) and for the establishment and maintenance of this fate by regulating the expression of transcription factors and structural components of the pathway. Herein we review miR-34 and miR-449 spatiotemporal regulation along with their roles during the different stages of multiciliogenesis.


Subject(s)
Centrioles , MicroRNAs , Cell Differentiation/genetics , Cilia/genetics , MicroRNAs/genetics
2.
Adv Exp Med Biol ; 1195: 35-41, 2020.
Article in English | MEDLINE | ID: mdl-32468456

ABSTRACT

Human brain possesses a unique anatomy and physiology. For centuries, methodological barriers and ethical challenges in accessing human brain tissues have restricted researchers into using 2-D cell culture systems and model organisms as a tool for investigating the mechanisms underlying neurological disorders in humans. However, our understanding regarding the human brain development and diseases has been recently extended due to the generation of 3D brain organoids, grown from human stem cells or induced pluripotent stem cells (iPSCs). This system evolved into an attractive model of brain diseases as it recapitulates to a great extend the cellular organization and the microenvironment of a human brain. This chapter focuses on the application of brain organoids in modelling several neurodevelopmental and neurodegenerative diseases.


Subject(s)
Brain/pathology , Neurodegenerative Diseases/pathology , Neurodevelopmental Disorders/pathology , Organoids/pathology , Humans , Induced Pluripotent Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL