Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 16024, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29167477

ABSTRACT

Using a set of state-of-the-art quantum chemical techniques we scrutinized the characteristically different reactivity of frustrated and classical Lewis pairs towards molecular hydrogen. The mechanisms and reaction profiles computed for the H2 splitting reaction of various Lewis pairs are in good agreement with the experimentally observed feasibility of H2 activation. More importantly, the analysis of activation parameters unambiguously revealed the existence of two reaction pathways through a low-energy and a high-energy transition state. An exhaustive scrutiny of these transition states, including their stability, geometry and electronic structure, reflects that the electronic rearrangement in low-energy transition states is fundamentally different from that of high-energy transition states. Our findings reveal that the widespread consensus mechanism of H2 splitting characterizes activation processes corresponding to high-energy transition states and, accordingly, is not operative for H2-activating systems. One of the criteria of H2-activation, actually, is the availability of a low-energy transition state that represents a different H2 splitting mechanism, in which the electrostatic field generated in the cavity of Lewis pair plays a critical role: to induce a strong polarization of H2 that facilities an efficient end-on acid-H2 interaction and to stabilize the charge separated "H+-H-" moiety in the transition state.

2.
Inorg Chem ; 55(5): 2185-99, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26866981

ABSTRACT

The most relevant manifestations of ligand noninnocence of quinone and bipyridine derivatives are thoroughly scrutinized and discussed through an extensive and systematic set of octahedral ruthenium complexes, [(en)2RuL](z), in four oxidation states (z = +3, +2, +1, and 0). The characteristic structural deformation of ligands upon coordination/noninnocence is put into context with the underlying electronic structure of the complexes and its change upon reduction. In addition, by means of decomposing the corresponding reductions into electron transfer and structural relaxation subprocesses, the energetic contribution of these structural deformations to the redox energetics is revealed. The change of molecular electron density upon metal- and ligand-centered reductions is also visualized and shown to provide novel insights into the corresponding redox processes. Moreover, the charge distribution of the π-subspace is straightforwardly examined and used as indicator of ligand noninnocence in the distinct oxidation states of the complexes. The aromatization/dearomatization processes of ligand backbones are also monitored using magnetic (NICS) and electronic (PDI) indicators of aromaticity, and the consequences to noninnocent behavior are discussed. Finally, the recently developed effective oxidation state (EOS) analysis is utilized, on the one hand, to test its applicability for complexes containing noninnocent ligands, and, on the other hand, to provide new insights into the magnitude of state mixings in the investigated complexes. The effect of ligand substitution, nature of donor atom, ligand frame modification on these manifestations, and measures is discussed in an intuitive and pedagogical manner.

3.
Chemistry ; 21(14): 5510-9, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25694108

ABSTRACT

The contributions of covalent and noncovalent interactions to the formation of classical adducts of bulky Lewis acids and bases and frustrated Lewis pairs (FLPs) were scrutinized by using various conceptual quantum chemical techniques. Significantly negative complexation energies were calculated for fourteen investigated Lewis pairs containing bases and acids with substituents of various sizes. A Ziegler-Rauk-type energy decomposition analysis confirmed that two types of Lewis pairs can be distinguished on the basis of the nature of the primary interactions between reactants; dative-bond formation and concomitant charge transfer from the Lewis base to the acid is the dominant and most stabilizing factor in the formation of Lewis acid-base adducts, whereas weak interactions are the main thermodynamic driving force (>50 %) for FLPs. Moreover, the ease and extent of structural deformation of the monomers appears to be a key component in the formation of the former type of Lewis pairs. A Natural Orbital for Chemical Valence (NOCV) analysis, which was used to visualize and quantify the charge transfer between the base and the acid, clearly showed the importance and lack of this type of interaction for adducts and FLPs, respectively. The Noncovalent Interaction (NCI) method revealed several kinds of weak interactions between the acid and base components, such as dispersion, π-π stacking, C-H⋅⋅⋅π interaction, weak hydrogen bonding, halogen bonding, and weak acid-base interactions, whereas the Quantum Theory of Atoms in Molecules (QTAIM) provided further conceptual insight into strong acid-base interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...