Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Water Sci Technol ; 74(12): 2832-2842, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27997393

ABSTRACT

Acesulfame is a widely used artificial sweetener. It can be discharged into surface water by domestic wastewater due to its incomplete retention during wastewater treatment. Concentrations may reach up to 10 µg/L for smaller rivers. State-of-the-art analysis allows the determination of acesulfame traces (0.01 µg/L) and thus a potential tracking of the presence of wastewater in riverbank filtrate. To evaluate the behavior of acesulfame in the aquatic environment, biodegradation and sorption of acesulfame were tested. Batch experiments yielded low sorption for several soils (estimated solid-water distribution coefficient of acesulfame <0.1 L/kg). Biodegradation in a fixed-bed reactor was not observed at environmental concentrations of 9 µg/L in aqueous compost and soil extract (observation period 56 days). Only in diluted effluent of a wastewater treatment plant did biodegradation start, after 17 days of operation, and acesulfame completely fade, within 28 days. Flow-through column experiments indicated conservative behavior of acesulfame (recovery >83%) and long-term observations at different concentration levels yielded no biodegradation. Overall, laboratory experiments demonstrated a conservative behavior of acesulfame under conditions typical for riverbank filtration. However, there are hints for certain settings which favor an adaptation of the microbial community and facilitate a rapid biodegradation of acesulfame.


Subject(s)
Sweetening Agents/chemistry , Thiazines/chemistry , Water Pollutants, Chemical/chemistry , Biodegradation, Environmental , Filtration , Laboratories , Soil , Wastewater
2.
Pest Manag Sci ; 60(6): 525-30, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15198324

ABSTRACT

Two small creeks, tributaries of the River Ruhr near Schwerte, Federal Republic of Germany, were investigated to reveal the regional agricultural and non-agricultural sources of pesticide inputs and the main pathways to surface water. In addition, the receiving water was monitored for pesticides. The watersheds are situated at the northern margin of the Rhenian Schiefergebirge, a highland landscape in North-Rhine-Westphalia. Solid carboniferous shale is covered by a shallow layer of quaternary unconsolidated rock (porous aquifer thickness <5 m). Occurrence of herbicides such as chlortoluron, isoproturon and terbuthylazine in surface water could be due to their broad agricultural application in regional dominant crops, such as barley, wheat and maize. Occurrence of diuron and glyphosate results from their use in residential settlements and industrial areas as well as from weed control on railway tracks. Atrazine concentrations up to 0.8 microg litre(-1) indicated recent use of this herbicide, which has been banned since 1991, and was also the result of non-agricultural applications. Pathways for pesticide input to the receiving waters were related to both surface run-off and underground passage. Two-thirds of the observed diuron load in the surface water resulted from an input by run-off. This was expected as a result of total herbicide application targets to sealed surfaces infringing current regulations and recommendations. Diuron load varied between 0.6 and 1.2% of the estimated amount applied annually in the investigated catchments. Non-agricultural pesticide use contributed more than two-thirds of the whole observed pesticide load in the tributaries and at least one-third in the River Ruhr.


Subject(s)
Environmental Monitoring , Fresh Water/chemistry , Pesticides/analysis , Water Pollutants, Chemical/analysis , Germany , Herbicides/analysis , Insecticides/analysis , Pest Control/methods , Rain , Water Movements , Water Pollution, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL