Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(20): 8850-8856, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717191

ABSTRACT

Oxidation of [(ArBIG-bian)2-Yb2+(dme)] (1) (ArBIG-bian = 1,2-bis[(2,6-dibenzhydryl-4-methylphenyl)imino]acenaphthene; dme = 1,2-dimethoxyethane) by 0.5 equivalent of Me2NC(S)S-S(S)CNMe2 in dme at ambient temperature affords a mixture of two products, [(ArBIG-bian)2-Yb3+{SC(S)NMe2}1-(dme)] and [(ArBIG-bian)1-Yb2+{SC(S)NMe2}1-(dme)], which represent two redox-isomers (2a and 2b, respectively). Their ratio in solution depends on the solvent as well as on the temperature. In the solid state, a decrease of temperature (350 → 100 K) caused an electron transfer from the Yb2+ ion to the ArBIG-bian radical-anion in isomer 2b to afford isomer 2a. Accordingly, the ratio of isomers 2a and 2b changes from 1 : 1 (350 K) to 3 : 1 (100 K). In contrast, in the dimer [(dme)(dpp-bian)1-Yb2+(µ-Cl)2Yb3+(dpp-bian)2-(dme)] (dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene), which is the sole example of a lanthanide complex that reveals solid-state redox-isomerism (valence tautomerism) reported so far, the electron transfer from the Yb2+ ion to the dpp-bian radical-anion takes place at around 150 K and is completed within a temperature interval of ca. 7 K.

2.
Dalton Trans ; 53(10): 4643-4651, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38357860

ABSTRACT

The reactions of oxide [(dpp-bian)Al(µ2-O)2Al(dpp-bian)] (1) (dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with phenyl- or cyclohexylisocyanates result in the formation of carbonimidate derivatives [(dpp-bian)Al(µ-O)(µ-RNCO2)Al(dpp-bian)] (R = Ph, 2; Cy, 3). Addition of N,N'-dicyclohexylcarbodiimide to compound 1 leads to the formation of ureate complex [(dpp-bian)Al(µ-O)(µ-(CyN)2CO)Al(dpp-bian)] (4). The reactions of the oxide 1 with pinacolborane and catecholborane afford oxo-bridged hydride [{(dpp-bian)Al(H)}(µ-O){Al(OBpin)(dpp-bian)}] (5) and compound [{(dpp-bian)Al(OBCat)}2(µ-O)] (7), respectively. Insertion of cyclohexylisocyanate into the Al-H bond of compound 5 gives CO insertion product [{(dpp-bian)Al(OC(H)NCy)}(µ-O){Al(OBpin)(dpp-bian)}] (6). New compounds have been characterized by ESR and IR spectroscopy; their molecular structures have been established by single-crystal X-ray analysis. The oxide 1 serves as a catalyst for the hydroboration of heteroallenes (isocyanates, carbodiimides) with pinacolborane.

3.
Inorg Chem ; 61(38): 14962-14972, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36102598

ABSTRACT

Reactivity of transition metal complexes containing the redox-active gallylene (dpp-bian)Ga ligand (dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) toward isocyanide, isocyanate, isothiocyanate, and ketene substrates is described. The reaction of [(dpp-bian)GaCr(CO)5] (1) with tBuNC results in a dative complex [(dpp-bian)Ga(CNtBu)Cr(CO)5] (2), while compound [(dpp-bian)GaCr(CO)5]2[Na(THF)2]2 (3) reacts with tBuNC to give the coordination polymer [(dpp-bian)GaCr(CO)5][Na(CNtBu)(THF)]n (5). Treatment of [(dpp-bian)GaCr(CO)5]2[Na(THF)2]2 with an excess of PhNCO results in trimerization of the latter and formation of complex [(dpp-bian)GaCr(CO)5][Na(PhNCO)3(Et2O) (DME)] (4). [(dpp-bian)GaFeCp(CO)2] (7) treated with Ph2CCO or PhNCS results in cycloaddition products [(dpp-bian)(Ph2CCO)GaFeCp(CO)2] (8) and [(dpp-bian)(PhNCS)GaFeCp(CO)2] (9). The formation of 2 and 9 was found to be reversible, which offers a means for facile regulation of transition metal center reactivity and cooperative substrate activation. New compounds were characterized by EPR (2), NMR (4, 8, and 9), and IR spectroscopy (2, 4, 5, 8, and 9). The molecular structures of 2, 4, 5, 8, and 9 were established by single-crystal X-ray diffraction analysis. Electronic structures of the compounds have been examined by DFT calculations.

4.
Inorg Chem ; 61(1): 206-213, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34949085

ABSTRACT

The reactions of H2AlCl with [(dpp-Bian)Na(Et2O)n] and [(ArBIG-Bian)Na(THF)] produce respective aluminum hydrides supported by radical-anionic 1,2-bis(arylimino)acenaphthene ligands, [(dpp-Bian)AlH2] (1) and [(ArBIG-Bian)AlH2(THF)] (2) (dpp-Bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene); ArBIG-Bian = 1,2-bis[(2,6-dibenzhydryl-4-methylphenyl)imino]acenaphthene). The reaction of 1 with CO2 proceeds with reduction of both C═O bonds and results in diolate [{(dpp-Bian)Al(µ-O2CH2)}2] (3). Complex 2 reacts with CO2 to carbonate [{(ArBIG-Bian)Al(µ-OCH2OCO2)}2] (4) that is a result of the insertion of CO2 into the Al-O bond in diolate species formed initially. Aluminum monohydrides [(dpp-Bian)AlH(X)] (X = Cl, 5; Me, 6) react with CO2 to form respective alumoxanes [{(dpp-Bian)AlX}2(µ-O)] (X = Cl, 7 and X = Me, 8). Compounds 1-4, 7, and 8 have been characterized by ESR and IR spectroscopy, and their molecular structures have been determined by single-crystal X-ray analysis.

5.
Inorg Chem ; 60(19): 14602-14612, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34551514

ABSTRACT

The dialanes [(dpp-Bian)Al-Al(dpp-Bian)] (1) and [(dpp-dad)Al(THF)-(THF)Al(dpp-dad)] (2) (dpp-Bian = 1,2-[(2,6-iPr2C6H3)NC]2C12H6, dpp-dad = [(2,6-iPr2C6H3)NC(CH3)]2) react with some isothiocyanates, isocyanates, and diphenylketene via [2 + 4] cycloaddition of the C═O or C═S bond across the C═C-N-Al fragment to afford complexes [L(X═C-Y)Al-Al(X═C-Y)L] with an intact Al-Al single bond (3, L = dpp-Bian, X = PhN, Y = O; 4, L = dpp-Bian, X = Ph2C, Y = O; 6, L = dpp-dad, X = BnN, Y = S; 7, L = dpp-dad, X = tBuN, Y = O; 8, L = dpp-dad, X = iPrN, Y = S; and 9, L = dpp-dad, X = CyN, Y = S). A mixed C═N and C═O mode cycloadduct, [(dpp-Bian)(TosN═C-O)Al-Al(TosN-C═O)(dpp-Bian)] 5, was obtained in the reaction of 1 with tosylisocyanate. Heating the solution of 3 resulted in a thermal transformation and a change of the cycloaddition mode from C═O to C═N to give the product [(dpp-Bian)(PhN-C═O)Al(O)Al(PhN-C═O)(dpp-Bian)] 10. The reduction of 7 and 8 with Na yielded the products [Na(THF)n]2[(dpp-dad-H)(X═C-Y)Al]2 (12, X = iPrN, Y = S, n = 2 and 13, X = tBuN, Y = O, n = 3) in which one of the methyl groups of the backbone of the initial dpp-dad ligand was dehydrogenated. When 2 was reacted with the bulky adamantyl isocyanate AdNCO, the C-C coupling of two substrates occurred to form 14 [(dpp-dad)Al(O═C-NAd)2Al(dpp-dad)] in which the coupled dianionic oxamide ligand bridged two Al atoms in a µ,η4-N,O/N,O mode. Moreover, in the presence of 2.0 equiv of Na metal, precursor 2 reacts with tBuNCS, p-TolylNCS, or Me3SiNCO, possibly through the reduced AlI intermediate, to yield the sulfur- or oxygen-bridged dimer [Na(solv)n]2[(dpp-dad)Al(µ-E)]2 (15, E = S, solv = THF, n = 3 and 16, E = O, solv = DME, n = 2) upon C═S or C═O bond cleavage. Dialane 1 reacts with dimethylsulfone to give a Lewis adduct [(dpp-Bian)(Me2SO2)Al]2 (17), which releases dimethylsulfone upon heating. The diamagnetic compounds 3-10 and 12-17 were characterized by NMR and IR spectroscopy. The molecular structures of 3-17 were established by single-crystal X-ray diffraction analysis. Electronic structures of the compounds and possible isomers have been examined by DFT calculations.

6.
Chemistry ; 27(18): 5745-5753, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33645870

ABSTRACT

The reaction of dialane [LAl-AlL] (1; L=dianion of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene, dpp-bian) with carbon dioxide results in two different products depending on solvent. In toluene at temperatures of about 0 °C, the reaction gives cycloadduct [L(CO2 )Al-Al(O2 C)L] (2), whereas in diethyl ether, the reaction affords oxo-bridged carbamato derivative [L(CO2 )(Et2 O)Al(µ-O)AlL] (3). The DFT and QTAIM calculations provide reasonable explanations for the reversible formation of complex 2 in the course of two subsequent (2+4) cycloaddition reactions. Consecutive transition states with low activation barriers were revealed. Also, the DFT study demonstrated a crucial effect of diethyl ether coordination to aluminium on the reaction of dialane 1 with CO2 . The optimized structures of key intermediates were obtained for the reactions in the presence of Et2 O; calculated thermodynamic parameters unambiguously testify the irreversible formation of the product 3.

7.
Dalton Trans ; 49(41): 14445-14451, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33047753

ABSTRACT

Reduction of ArBIG-bian (1, 1,2-bis[(2,6-dibenzhydryl-4-methylphenyl)imino]acenaphthene) with an excess of samarium in tetrahydrofuran (thf) and crystallization of the crude product from a thf/toluene mixture affords [(ArBIG-bian)Sm]·C7H8 (2a), which is free of the coordinating solvent. The use of 1,2-dimethoxyethane (dme) as the reaction medium resulted in the same product, [(ArBIG-bian)Sm]·C4H10O2 (2b), which differs from 2a only in the crystal lattice solvent. Reduction of 1 with an excess of ytterbium in dme gives compound [(ArBIG-bian)Yb(dme)]·2.5C7H8 (3), containing a coordinated dme molecule. All three products consist of dianionic ArBIG-bian ligands whose bulky 2,6-(Ph2CH)2-4-Me-C6H2 groups shield effectively the metal atoms. The newly prepared compounds 2a, 2b and 3 were characterized by 1H NMR and IR spectroscopy. The molecular structures of complexes 2a, 2b and 3 have been established by single crystal X-ray analysis. The intramolecular interactions were analysed on the basis of DFT calculations. The temperature dependence of the magnetic susceptibility of 2b and 3 in the region of 2-300 K was studied. The magnetic moments of complex 2b correspond to divalent samarium.

8.
Dalton Trans ; 49(9): 2941-2946, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32073071

ABSTRACT

The reduction of [(dpp-bian)BBr] (1, dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with dilithium naphthalenide in Et2O gives [{(dpp-bian)BBr}Li2(Et2O)2]2 (3). The treatment of [(dpp-bian)BONa] (5) and [(dpp-bian)Ge:] (7) with sodium is accompanied by protonation of the acenaphthylene fragment and affords [{(H-dpp-bian)BONa(dme)2}Na(dme)3] (6) and [(H-dpp-bian)Ge:][Na(dme)3] (8), respectively. Compounds 3, 6 and 8 have been characterized by 1H NMR and IR spectroscopy. The molecular structures of 3, [(dpp-bian)BOK] (4) and 8 have been established by single crystal X-ray analysis.

9.
Inorg Chem ; 58(24): 16559-16573, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31689094

ABSTRACT

The synthesis of electron-deficient gallium- and aluminum-centered species containing a redox-active dpp-Bian ligand (dpp-Bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) is described. The reaction of digallane [(dpp-Bian)Ga-Ga(dpp-Bian)] with [Ph3C][PF6] or AgPF6 resulted in polyoxidized species [(dpp-Bian)GaF2]2 (1), [(dpp-Bian)H2][PF6] (2), and [(dpp-Bian)GaF(O2PF2)]2 (3). The reaction of digallane with B(C6F5)3 led to electron-deficient gallylene [(dpp-Bian)GaB(C6F5)3] 4 of a dpp-Bian radical anion. The soft oxidation of digallane with tosyl cyanide gave the trinuclear cationic species [(dpp-Bian)Ga(Tos)3Ga(Tos)3Ga(dpp-Bian)][Ga(CN)4] (5) containing dpp-Bian radical anions. The reaction of [(dpp-Bian)AlEt2] with 1 equiv of [Ph3C][B(C6F5)4] resulted in the cationic complex [(dpp-Bian)AlEt2][B(C6F5)4] (6) of neutral dpp-Bian, while the treatment of [(dpp-Bian)AlEt(Et2O)] with 1 equiv of [Ph3C][B(C6F5)4] resulted in the compound [(dpp-Bian)AlEt(Et2O)][B(C6F5)4] (7) of a dpp-Bian radical anion. The reaction of diethylaluminum derivative [(dpp-Bian)AlEt2] with 1 equiv of B(C6F5)3 gave the cationic complex [{(dpp-Bian)AlEt}2F][EtB(C6F5)3] (8) containing radical-anion dpp-Bian ligands. The paramagnetic compounds 1, 2, 4, 5, 7, and 8 were characterized by electron paramagnetic resonance spectroscopy, and the diamagnetic complex 6 was characterized by NMR spectroscopy. The molecular structures of 1-6 and 8 were established by single-crystal X-ray diffraction analysis. Compounds 4 and 6-8 were found to be active initiators for immortal ring-opening polymerization of ε-caprolactone.

10.
Chemistry ; 25(35): 8259-8267, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-30892746

ABSTRACT

Digallane [L1 Ga-GaL1 ] (1, L1 =dpp-bian=1,2-[(2,6-iPr2 C6 H3 )NC]2 C12 H6 ) reacts with RN=C=O (R=Ph or Tos) by [2+4] cycloaddition of the isocyanate C=N bonds across both of its C=C-N-Ga fragments to afford [L1 (O=C-NR)Ga-Ga(RN-C=O)L1 ] (R=Ph, 3; R=Tos, 4). The reactions with both isocyanates result in new C-C and N-Ga single bonds. In the case of allyl isocyanate, the [2+4] cycloaddition across one C=C-N-Ga fragment of 1 is accompanied by insertion of a second allyl isocyanate molecule into the Ga-N bond of the same fragment to afford compound [L1 Ga-Ga(AllN- C=O)2 L1 ] (5) (All=allyl). In the presence of Na metal, the related digallane [L2 Ga-GaL2 ] (2; L2 =dpp-dad=[(2,6-iPr2 C6 H3 )NC(CH3 )]2 ) is converted into the gallium(I) carbene analogue [L2 Ga:]- (2 A), which undergoes a variety of reactions with isocyanate substrates. These include the cycloaddition of ethyl isocyanate to 2 A affording [Na2 (THF)5 ]{L2 Ga[EtN-C(O)]2 GaL2 } (6), cleavage of the N=C bond with release of 1 equiv. of CO to give [Na(THF)2 ]2 [L2 Ga(p-MeC6 H4 )(N-C(O))2 -N(p-MeC6 H4 )]2 (7), cleavage of the C=O bond to yield the di-O-bridged digallium compound [Na(THF)3 ]2 [L2 Ga-(µ-O)2 -GaL2 ] (8), and generation of the further addition product [Na2 (THF)5 ][L2 Ga(CyNCO2 )]2 (9). Complexes 3-9 have been characterized by NMR (1 H, 13 C), IR spectroscopy, elemental analysis, and X-ray diffraction analysis. Their electronic structures have been examined by DFT calculations.

11.
Chem Commun (Camb) ; 54(92): 12950-12953, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30383054

ABSTRACT

Reduction of [(dpp-bian)2-M2+(thf)4] (M = Ca, 1; Yb, 6; dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) by alkali metals results in heterometallic, [(dpp-bian)3-M2+K+(thf)2]2 (M = Ca, 2; Yb, 7), [(dpp-bian)4-Ca2+A2+(thf)4]2 (A = Na, 3; Li, 4; K, 5), [(dpp-bian)4-Yb2+K2+(thf)4]2 (8) and [(dpp-bian)24-Yb32+K2+(thf)8] (9). The reduction of [(dpp-bian)TmBr(thf)n] (in situ) affords [(dpp-bian)4-Tm3+Na+(thf)]2 (10).

12.
Chemistry ; 24(56): 14994-15002, 2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30016556

ABSTRACT

Whereas the chemistry of single-bond activation by compounds of the main group elements has undergone some development in recent years, the cleavage of multiple bonds remains underexplored. Herein, the reactions of two digallanes bearing α-diimine ligands, namely, [L1 Ga-GaL1 ] (1, L1 =dpp-dad=[(2,6-iPr2 C6 H3 )NC(CH3 )]2 ) and [L2 Ga-GaL2 ] (2, L2 =dpp-bian=1,2-[(2,6-iPr2 C6 H3 )NC]2 C10 H6 ), with isothiocyanates are reported. Reactions of 1 or 2 with isothiocyanates in 1:2 molar ratio proceeded with [2+4] cycloaddition of the C=S bond across the C2 N2 Ga metallacycle with formation of C-C and S-Ga single bonds to afford [L1 (RN=C-S)Ga-Ga(S-C=NR)L1 ] (3, R=Me; 4, R=Ph) and [L2 (RN=C-S)Ga-Ga(S-C=NR)L2 ] (8, R=allyl; 9, R=Ph). In the cases of 8 and 9, this cycloaddition is reversible. The digallanes reacted with 2 equiv of PhNCS in the presence of Na metal or at high temperatures through a unique reductive cleavage of the C=S bond to yield the disulfide-bridged digallium species [Na(THF)3 ]2 [L1 Ga(µ-S)2 GaL1 ] (5), [L2 Ga(µ-S)2 GaL2 ] (10), and [Na(DME)3 ][L2 Ga(µ-S)2 GaL2 ] (11). Moreover, products 4 and 5 can further react with an excess of isothiocyanate, through cleavage of the C=S bond or cycloaddition, to give the bis- or mono-S-bridged complexes [Na(THF)2 ]2 [L1 (PhN=C-S)Ga(µ-S)2 Ga(S-C=NPh)L1 ] (6) and [L1 (PhN=C-S)Ga(µ-S)Ga(S-C=NPh)L1 ] (7). All the newly prepared compounds were characterized by elemental analysis, single-crystal X-ray diffraction, IR spectroscopy, NMR (3-9) or ESR spectroscopy (11), and DFT calculations.

13.
Chemistry ; 24(8): 1877-1889, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29125198

ABSTRACT

The reaction of digallane (dpp-bian)Ga-Ga(dpp-bian) (2) (dpp-bian=1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with allyl chloride (AllCl) proceeded by a two-electron oxidative addition to afford paramagnetic complexes (dpp-bian)Ga(η1 -All)Cl (3) and (dpp-bian)(Cl)Ga-Ga(Cl)(dpp-bian) (4). Treatment of complex 4 with pyridine induced an intramolecular redox process, which resulted in the diamagnetic complex (dpp-bian)Ga(Py)Cl (5). In reaction with allyl bromide, complex 2 gave metal- and ligand-centered addition products (dpp-bian)Ga(η1 -All)Br (6) and (dpp-bian-All)(Br)Ga-Ga(Br)(dpp-bian-All) (7). The reaction of digallane 2 with Ph3 SnNCO afforded (dpp-bian)Ga(SnPh3 )2 (8) and (dpp-bian)(NCO)Ga-Ga(NCO)(dpp-bian) (9). Treatment of GaCl3 with (dpp-bian)Na in diethyl ether resulted in the formation of (dpp-bian)GaCl2 (10). Diorganylgallium derivatives (dpp-bian)GaR2 (R=Ph, 11; tBu, 14; Me, 15; Bn, 16) and (dpp-bian)Ga(η1 -All)R (R=nBu, 12; Cp, 13) were synthesized from complexes 3, 10, Bn2 GaCl, or tBu2 GaCl by salt metathesis. The salt elimination reaction between (dpp-bian)GaI2 (17) and tBuLi was accompanied by reduction of both the metal and the dpp-bian ligand, which resulted in digallane 2 as the final product. Similarly, the reaction of complex 10 with MentMgCl (Ment=menthyl) proceeded with reduction of the dpp-bian ligand to give the diamagnetic complex [(dpp-bian)GaCl2 ][Mg2 Cl3 (THF)6 ] (18). Compounds 11, 12, 13, 15, and 16 were thermally robust, whereas compound 14 decomposed when heated at reflux in toluene to give complex (dpp-bian-tBu)GatBu2 (19). Both complexes 7 and 19 contain R-substituted dpp-bian ligand: in the former compound the allyl group was attached to the imino-carbon atom, whereas in complex 19, the tBu group was situated on the naphthalene ring. Crystal structures of complexes 3, 8, 9, 10, 13, 14, 18, and 19 were determined by single-crystal X-ray analysis. The presence of dpp-bian radical anions in 3, 6, 8, and 10-16 was determined by ESR spectroscopy.

14.
Inorg Chem ; 56(16): 9825-9833, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28786665

ABSTRACT

The reaction of (dpp-Bian)EuII(dme)2 (3) (dpp-Bian is dianion of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene; dme is 1,2-dimethoxyethane) with 2,2'-bipyridine (bipy) in toluene proceeds with replacement of the coordinated solvent molecules with neutral bipy ligands and affords europium(II) complex (dpp-Bian)EuII(bipy)2 (9). In contrast the reaction of related ytterbium complex (dpp-Bian)YbII(dme)2 (4) with bipy in dme proceeds with the electron transfer from the metal to bipy and results in (dpp-Bian)YbIII(bipy)(bipy-̇) (10) - ytterbium(III) derivative containing both neutral and radical-anionic bipy ligands. Noteworthy, in both cases dianionic dpp-Bian ligands retain its reduction state. The ligand-centered redox-process occurs when complex 3 reacts with N,N'-bis[2,4,6-trimethylphenyl]-1,4-diaza-1,3-butadiene (mes-dad). The reaction product (dpp-Bian)EuII(mes-dad)(dme) (11) consists of two different redox-active ligands both in the radical-anionic state. The reduction of 3,6-di-tert-butyl-4-(3,6-di-tert-butyl-2-ethoxyphenoxy)-2-ethoxycyclohexa-2,5-dienone (the dimer of 2-ethoxy-3,6-di-tert-butylphenoxy radical) with (dpp-Bian)EuII(dme)2 (3) caused oxidation of the dpp-Bian ligand to radical-anion to afford (dpp-Bian)(ArO)EuII(dme) (ArO = OC6H2-3,6-tBu2-2-OEt) (12). The molecular structures of complexes 9-12 have been established by the single crystal X-ray analysis. The magnetic behavior of newly prepared compounds has been investigated by the SQUID technique in the range 2-310 K. The isotropic exchange model has been adopted to describe quantitatively the magnetic properties of the exchange-coupled europium(II) complexes (11 and 12). The best-fit isotropic exchange parameters are in good agreement with their density functional theory-computed counterparts.

15.
Inorg Chem ; 55(17): 9047-56, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27548713

ABSTRACT

The reactivity of digallane (dpp-Bian)Ga-Ga(dpp-Bian) (1) (dpp-Bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) toward acenaphthenequinone (AcQ), sulfur dioxide, and azobenzene was investigated. The reaction of 1 with AcQ in 1:1 molar ratio proceeds via two-electron reduction of AcQ to give (dpp-Bian)Ga(µ2-AcQ)Ga(dpp-Bian) (2), in which diolate [AcQ](2-) acts as "bracket" for the Ga-Ga bond. The interaction of 1 with AcQ in 1:2 molar ratio proceeds with an oxidation of the both dpp-Bian ligands as well as of the Ga-Ga bond to give (dpp-Bian)Ga(µ2-AcQ)2Ga(dpp-Bian) (3). At 330 K in toluene complex 2 decomposes to give compounds 3 and 1. The reaction of complex 2 with atmospheric oxygen results in oxidation of a Ga-Ga bond and affords (dpp-Bian)Ga(µ2-AcQ)(µ2-O)Ga(dpp-Bian) (4). The reaction of digallane 1 with SO2 produces, depending on the ratio (1:2 or 1:4), dithionites (dpp-Bian)Ga(µ2-O2S-SO2)Ga(dpp-Bian) (5) and (dpp-Bian)Ga(µ2-O2S-SO2)2Ga(dpp-Bian) (6). In compound 5 the Ga-Ga bond is preserved and supported by dithionite dianionic bracket. In compound 6 the gallium centers are bridged by two dithionite ligands. Both 5 and 6 consist of dpp-Bian radical anionic ligands. Four-electron reduction of azobenzene with 1 mol equiv of digallane 1 leads to complex (dpp-Bian)Ga(µ2-NPh)2Ga(dpp-Bian) (7). Paramagnetic compounds 2-7 were characterized by electron spin resonance spectroscopy, and their molecular structures were established by single-crystal X-ray analysis. Magnetic behavior of compounds 2, 5, and 6 was investigated by superconducting quantum interference device technique in the range of 2-295 K.

16.
Inorg Chem ; 53(10): 5159-70, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24809210

ABSTRACT

The reactivity of digallane (dpp-Bian)Ga-Ga(dpp-Bian) (1), which consists of redox-active ligand 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-Bian), has been studied. The reaction of 1 with I2 proceeds via one-electron oxidation of each of two dpp-Bian ligands to a radical-anionic state and affords complex (dpp-Bian)IGa-GaI(dpp-Bian) (2). Dissolution of complex 2 in pyridine (Py) gives monomeric compound (dpp-Bian)GaI(Py) (3) as a result of a solvent-induced intramolecular electron transfer from the metal-metal bond to the dpp-Bian ligands. Treatment of compound 3 with B(C6F5)3 leads to removal of pyridine and restores compound 2. The reaction of compound 1 with 3,6-di-tert-butyl-ortho-benzoquinone (3,6-Q) proceeds with oxidation of all the redox-active centers in 1 (the Ga-Ga bond and two dpp-Bian dianions) and results in mononuclear catecholate (dpp-Bian)Ga(Cat) (4) (Cat = [3,6-Q](2-)). Treatment of 4 with AgBF4 gives a mixture of [(dpp-Bian)2Ag][BF4] (5) and (dpp-Bian)GaF(Cat) (6), which both consist of neutral dpp-Bian ligands. The reduction of benzylideneacetone (BA) with 1 generates the BA radical-anions, which dimerize, affording (dpp-Bian)Ga-(BA-BA)-Ga(dpp-Bian) (7). In this case the Ga-Ga bond remains unchanged. Within 10 min at 95 °C in solution compound 7 undergoes transformation to paramagnetic complex (dpp-Bian)Ga(BA-BA) (8) and metal-free compound C36H40N2 (9). The latter is a product of intramolecular addition of the C-H bond of one of the iPr groups to the C═N bond in dpp-Bian. Diamagnetic compounds 3, 5, 6, and 9 have been characterized by NMR spectroscopy, and paramagnetic complexes 2, 4, 7, and 8 by ESR spectroscopy. Molecular structures of 2-7 and 9 have been established by single-crystal X-ray analysis.

17.
Chemistry ; 18(1): 255-66, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22139620

ABSTRACT

Acetylene, phenylacetylene, and alkylbutynoates add reversibly to (dpp-bian)Ga-Ga(dpp-bian) (dpp-bian=1,2-bis[(2,6-diisopropylphenyl)-imino]acenaphthene) to give addition products [dpp-bian(R(1)C=CR(2))]Ga-Ga[(R(2)C=CR(1))dpp-bian]. The alkyne adds across the Ga-N-C section, which results in new carbon-carbon and carbon-gallium bonds. The adducts were characterized by electron absorption, IR, and (1)H NMR spectroscopy and their molecular structures have been determined by single-crystal X-ray analysis. According to the X-ray data, a change in the coordination number of gallium from three [in (dpp-bian)Ga-Ga(dpp-bian)] to four (in the adducts) results in elongation of the metal-metal bond by approximately 0.13 Å. The adducts undergo a facile alkynes elimination at elevated temperatures. The equilibrium between [dpp-bian(PhC=CH)]Ga-Ga[(HC=CPh)dpp-bian] and [(dpp-bian)Ga-Ga(dpp-bian) + 2 PhC≡CH] in toluene solution was studied by (1)H NMR spectroscopy. The equilibrium constants at various temperatures (298≤T≤323 K) were determined, from which the thermodynamic parameters for the phenylacetylene elimination were calculated (ΔG°=2.4 kJ mol(-1), ΔH°=46.0 kJ mol(-1), ΔS°=146.0 J K(-1) mol(-1)). The reactivity of (dpp-bian)Ga-Ga(dpp-bian) towards alkynes permits use as a catalyst for carbon-nitrogen and carbon-carbon bond-forming reactions. The bisgallium complex was found to be a highly effective catalyst for the hydroamination of phenylacetylene with anilines. For instance, with [(dpp-bian)Ga-Ga(dpp-bian)] (2 mol%) in benzene more than 99% conversion of PhNH(2) and PhC≡CH into PhN=C(Ph)CH(3) was achieved in 16 h at 90 °C. Under similar conditions, the reaction of 1-aminoanthracene with PhC≡CH catalyzed by (dpp-bian)Ga-Ga(dpp-bian) formed a carbon-carbon bond to afford 1-amino-2-(1-phenylvinyl)anthracene in 99% yield.

18.
Dalton Trans ; (24): 4689-94, 2009 Jun 28.
Article in English | MEDLINE | ID: mdl-19513477

ABSTRACT

Molybdenum hexacarbonyl reacts with 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (, dpp-BIAN) and 1,2-bis[(trimethylsilyl)imino]acenaphthene (, tms-BIAN) in toluene to produce (dpp-BIAN)Mo(CO)(4) () and (tms-BIAN)Mo(CO)(4) (), respectively. The reaction of [CpNi(CO)](2) with yields (dpp-BIAN)NiCp (). Metathesis between Li(2)(tms-BIAN) and NiCl(2)(dppe) affords the Ni(0) complex (tms-BIAN)Ni(dppe) (). The diamagnetic compounds , and have been characterized by (1)H, (29)Si and (31)P NMR spectroscopy, IR spectroscopy and elemental analysis. The ESR spectrum of the paramagnetic compound indicates the presence of Ni(i) coordinated by Cp and a neutral dpp-BIAN ligand. The molecular structures of have been determined by single-crystal X-ray analysis.

20.
Chemistry ; 9(23): 5778-83, 2003 Dec 05.
Article in English | MEDLINE | ID: mdl-14673848

ABSTRACT

The reduction of benzophenone with the magnesium complex [(2,6-iPr(2)C(6)H(3)-bian)Mg(thf)(3)] (1), containing the 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene dianion, affords the pinacolato complex [(2,6-iPr(2)C(6)H(3)-bian)Mg(thf)](2)[micro-O(2)C(2)Ph(4)].(C(6)H(6))(4) (2). The reaction of 1 with 9(10H)-anthracenone yields the 9-anthracenolato complex [(2,6-iPr(2)C(6)H(3)-bian)Mg(OC(14)H(9))(thf)(2)] (3). Complexes 2 and 3 were characterized by elemental analyses, UV/Vis, IR, and ESR spectroscopy, as well as by single crystal X-ray diffraction. Complex 2 dissociates in solution with splitting of the bridging pinacolato unit, forming the biradical diimino/ketyl complex [(2,6-iPr(2)C(6)H(3)-bian)Mg(thf)(OCPh(2))].

SELECTION OF CITATIONS
SEARCH DETAIL
...