Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833534

ABSTRACT

Nature continually refines its processes for optimal efficiency, especially within biological systems. This article explores the collaborative efforts of researchers worldwide, aiming to mimic nature's efficiency by developing smarter and more effective nanoscale technologies and biomaterials. Recent advancements highlight progress and prospects in leveraging engineered nucleic acids and proteins for specific tasks, drawing inspiration from natural functions. The focus is developing improved methods for characterizing, understanding, and reprogramming these materials to perform user-defined functions, including personalized therapeutics, targeted drug delivery approaches, engineered scaffolds, and reconfigurable nanodevices. Contributions from academia, government agencies, biotech, and medical settings offer diverse perspectives, promising a comprehensive approach to broad nanobiotechnology objectives. Encompassing topics from mRNA vaccine design to programmable protein-based nanocomputing agents, this work provides insightful perspectives on the trajectory of nanobiotechnology toward a future of enhanced biomimicry and technological innovation.

2.
Methods Mol Biol ; 2709: 179-189, 2023.
Article in English | MEDLINE | ID: mdl-37572280

ABSTRACT

Particle tracking (PT) microrheology is a passive microrheological approach that characterizes material properties of soft matter. Multicomponent materials with the ability to create extensive crosslinking, such as supra-assemblies, may exhibit a complex interplay of viscous and elastic properties with a substantial contribution of liquid phase still diffusing through the system. Microrheology analyzes the motion of microscopic beads immersed in a sample, making it possible to evaluate the rheological properties of biological supra-assemblies. This method requires only a small volume of the sample and a relatively simple, inexpensive experimental setup. The objective of this chapter is to describe the experimental procedures for the observation of particle motion, calibration of an optical setup for particle tracking, preparation of imaging chambers, and the use of image analysis software for particle tracking in viscoelastic nucleic acid-based supra-assemblies.


Subject(s)
Image Processing, Computer-Assisted , Software , Rheology/methods , Viscosity , Calibration
3.
Methods Mol Biol ; 2709: 299-307, 2023.
Article in English | MEDLINE | ID: mdl-37572290

ABSTRACT

DNA-templated silver nanoclusters (DNA-AgNCs) are a unique class of bioinorganic nanomaterials. The optical properties and biological activities of DNA-AgNCs are readily modulated by the minor adjustments in the sequence or structure of the templating oligonucleotide. Excitation-emission matrix spectroscopy (EEMS) enables the fluorescence of compounds to be measured in a way that examines the entirety of a material's fluorescent properties. The use of EEMS for the characterization of DNA-AgNCs allows for multiple fluorescence peaks to be readily identified while providing the excitation and emission wavelengths of each signal. To assess the antibacterial and cytotoxic activities of DNA-AgNCs, two separate experimental approaches are used. Assessing the growth of bacteria over time is accomplished by measuring the optical density of the bacterial suspension with 600 nm light, which is directly related to the number of bacteria in suspension. In order to evaluate the DNA-AgNCs for cytotoxic activity, cell viability assays which probe mitochondrial activity were used. Herein, we describe protocols for the characterization of the fluorescent, antibacterial, and cytotoxic activities of DNA-AgNCs using EEM, optical density measurements, and cell viability assays.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Silver/pharmacology , Silver/chemistry , Spectrometry, Fluorescence/methods , Metal Nanoparticles/chemistry , DNA/chemistry , DNA Replication , Coloring Agents , Biosensing Techniques/methods
4.
Nanoscale Adv ; 5(13): 3500-3511, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37383066

ABSTRACT

Silver nanoclusters (AgNCs) are the next-generation nanomaterials representing supra-atomic structures where silver atoms are organized in a particular geometry. DNA can effectively template and stabilize these novel fluorescent AgNCs. Only a few atoms in size - the properties of nanoclusters can be tuned using only single nucleobase replacement of C-rich templating DNA sequences. A high degree of control over the structure of AgNC could greatly contribute to the ability to fine-tune the properties of silver nanoclusters. In this study, we explore the properties of AgNCs formed on a short DNA sequence with a C12 hairpin loop structure (AgNC@hpC12). We identify three types of cytosines based on their involvement in the stabilization of AgNCs. Computational and experimental results suggest an elongated cluster shape with 10 silver atoms. We found that the properties of the AgNCs depend on the overall structure and relative position of the silver atoms. The emission pattern of the AgNCs depends strongly on the charge distribution, while all silver atoms and some DNA bases are involved in optical transitions based on molecular orbital (MO) visualization. We also characterize the antibacterial properties of silver nanoclusters and propose a possible mechanism of action based on the interactions of AgNCs with molecular oxygen.

5.
Nanomedicine (Lond) ; 18(9): 769-782, 2023 04.
Article in English | MEDLINE | ID: mdl-37345552

ABSTRACT

Silver nanoparticles (AgNPs) are increasingly considered for biomedical applications as drug-delivery carriers, imaging probes and antibacterial agents. Silver nanoclusters (AgNCs) represent another subclass of nanoscale silver. AgNCs are a promising tool for nanomedicine due to their small size, structural homogeneity, antibacterial activity and fluorescence, which arises from their molecule-like electron configurations. The template-assisted synthesis of AgNCs relies on organic molecules that act as polydentate ligands. In particular, single-stranded nucleic acids reproducibly scaffold AgNCs to provide fluorescent, biocompatible materials that are incorporable in other formulations. This mini review outlines the design and characterization of AgNPs and DNA-templated AgNCs, discusses factors that affect their physicochemical and biological properties, and highlights applications of these materials as antibacterial agents and biosensors.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nucleic Acids , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biosensing Techniques/methods , Drug Carriers , DNA/chemistry
6.
Front Immunol ; 14: 1053550, 2023.
Article in English | MEDLINE | ID: mdl-36798121

ABSTRACT

The immune system has evolved to defend organisms against exogenous threats such as viruses, bacteria, fungi, and parasites by distinguishing between "self" and "non-self". In addition, it guards us against other diseases, such as cancer, by detecting and responding to transformed and senescent cells. However, for survival and propagation, the altered cells and invading pathogens often employ a wide range of mechanisms to avoid, inhibit, or manipulate the immunorecognition. As such, the development of new modes of therapeutic intervention to augment protective and prevent harmful immune responses is desirable. Nucleic acids are biopolymers essential for all forms of life and, therefore, delineating the complex defensive mechanisms developed against non-self nucleic acids can offer an exciting avenue for future biomedicine. Nucleic acid technologies have already established numerous approaches in therapy and biotechnology; recently, rationally designed nucleic acids nanoparticles (NANPs) with regulated physiochemical properties and biological activities has expanded our repertoire of therapeutic options. When compared to conventional therapeutic nucleic acids (TNAs), NANP technologies can be rendered more beneficial for synchronized delivery of multiple TNAs with defined stabilities, immunological profiles, and therapeutic functions. This review highlights several recent advances and possible future directions of TNA and NANP technologies that are under development for controlled immunomodulation.


Subject(s)
Nanoparticles , Neoplasms , Nucleic Acids , Humans , Immunomodulation , Neoplasms/drug therapy , Immunity , Nanoparticles/therapeutic use , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...