Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Vet Intern Med ; 37(3): 1201-1208, 2023.
Article in English | MEDLINE | ID: mdl-37083137

ABSTRACT

BACKGROUND: Nerve growth factor (NGF) is a neurotrophin that is increased in osteoarthritic joints of horses. In humans, NGF has been associated with pain, and both synovial and serum NGF concentrations are increased in osteoarthritic patients. Studies in humans also have shown that serum NGF concentration can increase with stress. Serum NGF concentration should be evaluated in horses with osteoarthritis-associated lameness. OBJECTIVES: Quantify and compare serum NGF concentration in horses with osteoarthritis-associated lameness and sound horses. Additionally, the impact of short-term stress on serum NGF concentration was investigated. ANIMALS: Lame horses with radiographic evidence of osteoarthritis (n = 20), lame horses without radiographic changes in the affected joint (n = 20) and sound horses (n = 20). In addition, horses with acute fractures (n = 9) were sampled. To determine the effect of stress, serum from horses subjected to a stressful event (transportation, n = 5; stress confirmed by increased serum cortisol concentration) was analyzed. METHODS: Cross-sectional clinical study (lame, sound, and fracture cohorts) and experimental longitudinal study (stress cohort). Serum NGF concentration was determined using a quantitative sandwich ELISA. RESULTS: Serum NGF concentration was increased in lame horses with radiographic evidence of osteoarthritis (P < .0001; median, 238 pg/mL; interquartile range [IQR], 63-945 pg/mL) and in lame horses without radiographic evidence of osteoarthritis in the painful joint (P < .05; median, 31 pg/mL; IQR, 31-95 pg/mL) compared with sound horses (median, 31 pg/mL; IQR, 31-46 pg/mL). Serum NGF concentration did not increase with short-term stress and was low in horses with fracture-associated pain. CONCLUSIONS AND CLINICAL IMPORTANCE: Serum NGF concentration was high in the cohort with advanced osteoarthritis and should be investigated as a marker for osteoarthritis-associated pain.


Subject(s)
Horse Diseases , Osteoarthritis , Humans , Animals , Horses , Longitudinal Studies , Lameness, Animal , Cross-Sectional Studies , Nerve Growth Factor , Horse Diseases/metabolism , Osteoarthritis/complications , Osteoarthritis/veterinary , Pain/veterinary
2.
J Orthop Res ; 41(2): 316-324, 2023 02.
Article in English | MEDLINE | ID: mdl-35578994

ABSTRACT

Nerve growth factor (NGF) is a neurotrophin that has been implicated in pain signaling, apoptosis, inflammation and proliferation. The resultant effects depend on interaction with two different receptors; tyrosine kinase A (TrkA) and p75NTR . NGF increases in synovial fluid from osteoarthritic joints, and monoclonal antibody therapy is trialed to treat osteoarthritis (OA)-related pain. Investigation of the complex and somewhat contradictory signaling pathways of NGF is conducted in neural research, but has not followed through to orthopaedic studies. The objectives of this study were to compare the expression of NGF receptors and the downstream regulator BAX in synovial membranes from joints in various stages of OA. The horse was used as a model. Synovial membranes were harvested from five healthy horses postmortem and from clinical cases with spontaneous OA undergoing arthroscopic surgery for lameness. Four horses with synovitis without gross cartilage changes, four horses with synovitis and cartilage damage, and four horses with synovitis and intracarpal fractures were included. Samples were investigated by immunohistochemistry and results showed that nuclear staining of TrkA, p75NTR and BAX increases in OA-associated synovitis. TrkA expression increased in early disease stages whereas increases in p75NTR were most prominent in later disease stages with cartilage damage and fibrosis. Clinical significance: Suppression of NGF may result in varied effects depending on different stages of the osteoarthritic disease process.


Subject(s)
Osteoarthritis , Synovitis , Horses , Animals , Receptor, trkA/metabolism , Nerve Growth Factor/metabolism , bcl-2-Associated X Protein , Receptors, Nerve Growth Factor/metabolism , Synovial Membrane/metabolism , Pain , Patient Acuity
3.
Equine Vet J ; 55(2): 325-335, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35514185

ABSTRACT

BACKGROUND: Autologous conditioned serum (ACS) is used to treat osteoarthritis in horses, although its effects are not fully investigated. OBJECTIVES: To investigate the effects of equine serum and conditioned serum on chondrocytes stimulated with interleukin (IL)-1ß and cartilage explants with mild osteoarthritis. STUDY DESIGN: In vitro experimental study. METHODS: The effect of three different serum preparations (unincubated control [PS], serum incubated 24 h [PS24h] and serum incubated 24 h in ACS containers [PCS]) pooled from lame horses were tested in two in vitro models. IL-1ß and IL-1 receptor antagonist (IL-1Ra) concentrations were measured in all sera. In model 1, chondrocyte pellet cultures were stimulated with IL-1ß prior to treatment with the serum preparations for 2 and 48 h. Microarray, polymerase chain reaction, and matrix metallopeptidase-13 analyses were performed. In model 2, cartilage explants from horses with structural osteoarthritis were treated with PS or PCS on days 0, 6 and 12, or left untreated, and evaluated at day 24 using the OARSI grading scale for histological evaluation of articular cartilage. RESULTS: The IL-1Ra concentration in PS24h and PCS was significantly higher than in PS. In model 1, inflammation- and cartilage matrix degradation-related genes were upregulated after 48 h in all treatment groups versus untreated controls. Cartilage matrix molecules, aggrecan and collagens, were downregulated in PS24h- and PCS-treated pellets versus untreated controls. Growth factor signalling genes were upregulated-FGF7 in all treatment groups, BMP2 in PS24h-, and INHBA in PCS-treated-compared with untreated controls. In model 2, the OARSI score at day 24 was not significantly different between treatment groups. MAIN LIMITATIONS: Results from in vitro models cannot be directly translated to in vivo situations. CONCLUSIONS: In vitro treatment with conditioned serum did not alleviate IL-1ß-induced responses in chondrocyte pellets or lead to morphological improvement in osteoarthritic cartilage explants.


HISTORIAL: Suero autólogo acondicionado (ACS) es usado para tartar osteoartritis en caballos, aunque sus efectos no han sido completamente investigados. OBJETIVOS: Investigar los efectos de suero equino y suero acondicionado en condrocitos estimulados con interleukina (IL)-1ß y explantes de cartílago con osteoartritis leve. DISEÑO DEL ESTUDIO: Estudio experimental in vitro. MÉTODOS: El efecto de tres preparaciones séricas diferentes (control no incubado (PS), suero incubado 24 h (PS24h), y suero incubado 24 h en frascos ACS (PCS)) combinados y obtenidos de caballos cojos fueron probados en dos modelos in vitro. Las concentraciones de IL-1ß y de receptor antagonista de IL-1 (IL-1Ra) fueron medidas en todos los sueros. En el modelo 1, los cultivos de pellets de condrocitos fueron estimulados con IL-1ß antes de ser tratados con las preparaciones séricas durante 2 y 48 h. Se realizaron análisis de micromatrices, reacciones de polimerasa en cadena y de matriz de metalopeptidasa-13. En el modelo 2, explantaciones de cartílago proveniente de caballos con osteoartritis estructural fueron tratados con PS o PCS en los días 0, 6 y 12, o dejados sin tartar, y evaluados al día 24 usando la escala de graduación OARSI para evaluación histológica de cartílago articular. RESULTADOS: La concentración de IL-1Ra en PS24h y PCS fue significativamente mayor que en PS. En el modelo 1, los genes relacionados a la inflamación y a la degradación de la matriz cartilaginosa estaban aumentados después de 48 h en todos los grupos tratados en comparación a los controles no tratados. Las moléculas de matriz cartilaginosa, agrecanos y colágenos estaban disminuidos en los pellets PS24h y PCS versus los controles no tratados. Los genes de señales de factores de crecimiento FGF7 estaban aumentados en todos los grupos tratados, BMP2 en PS24h y INHBA in PCS en comparación con los controles no tratados. En el modelo 2, la escala OARSI al día 24 no fue significativamente distinta entre los grupos de tratamientos. LIMITACIONES PRINCIPALES: Los resultados de modelos in vitro no pueden ser directamente aplicados a situaciones in vivo. CONCLUSIONES: El tratamiento in vitro con suero acondicionado no alivió las respuestas inducidas por IL-1ß en pellets de condrocitos o llevo a mejoramiento morfológico en explantes de cartílago con osteoartritis.


Subject(s)
Cartilage, Articular , Horse Diseases , Osteoarthritis , Horses , Animals , Chondrocytes/metabolism , Interleukin 1 Receptor Antagonist Protein/metabolism , Interleukin 1 Receptor Antagonist Protein/pharmacology , Osteoarthritis/therapy , Osteoarthritis/veterinary , Inflammation/metabolism , Inflammation/veterinary , Cells, Cultured , Horse Diseases/metabolism
4.
Res Vet Sci ; 151: 156-163, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36029605

ABSTRACT

Nerve Growth Factor (NGF) is a signalling molecule for pain and inflammation. NGF is increased in synovial fluid from osteoarthritic humans and animals, compared to healthy controls. Monoclonal antibody therapy directed against NGF has been approved to treat pain in osteoarthritic dogs but despite many years of trialling, therapy has not been approved for human use. One reason for this is that adverse reactions with rapidly progressing osteoarthritis has occurred in some individuals. More detailed knowledge of NGF expression in joints is needed. In this study, capillary-based Simple Western was used to analyse NGF in cultured equine chondrocytes. Chondrocytes were collected post mortem from three macroscopically healthy intercarpal joints and three intercarpal joints with mild osteoarthritic changes. The chondrocytes were expanded to passage one and seeded in chondrogenic medium to maintain the phenotype. On day four, cells were either stimulated with LPS or kept untreated in medium. All cells were harvested on day five. Wes analysis of lysates did not show mature NGF but two proforms, 40 and 45 kDa, were identified. Results were confirmed with western blot. The same proforms were expressed in chondrocytes from healthy and osteoarthritic joints. Acute inflammation induced by LPS stimulation did not change the forms of expressed NGF. Capillary Simple Western offers a sensitive and sample-sparing alternative to traditional western blot. However, confirmation of peaks is imperative in order to avoid misinterpretation of findings. In addition, in this case the method did not offer the possibility of quantification advertised by the manufacturers.


Subject(s)
Cartilage, Articular , Dog Diseases , Horse Diseases , Animals , Cartilage, Articular/metabolism , Cells, Cultured , Chondrocytes/metabolism , Dog Diseases/metabolism , Dogs , Horse Diseases/metabolism , Horses , Humans , Immunoassay/veterinary , Inflammation/metabolism , Inflammation/veterinary , Lipopolysaccharides/metabolism , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Pain/metabolism , Pain/veterinary
5.
Equine Vet J ; 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35485784

ABSTRACT

BACKGROUND: Autologous conditioned serum (ACS) is used to treat osteoarthritis in horses, although its effects are not fully investigated. OBJECTIVES: To investigate the effects of equine serum and conditioned serum on chondrocytes stimulated with interleukin (IL)-1ß and cartilage explants with mild osteoarthritis. STUDY DESIGN: In vitro experimental study. METHODS: The effect of three different serum preparations (unincubated control [PS], serum incubated 24 h [PS24h], and serum incubated 24 h in ACS containers [PCS]) pooled from lame horses were tested in two in vitro models. IL-1ß and IL-1 receptor antagonist (IL-1Ra) concentrations were measured in all sera. In model 1, chondrocyte pellet cultures were stimulated with IL-1ß prior to treatment with the serum preparations for 2 and 48 h. Microarray, polymerase chain reaction, and matrix metallopeptidase-13 analyses were performed. In model 2, cartilage explants from horses with structural osteoarthritis were treated with PS or PCS on days 0, 6, and 12, or left untreated, and evaluated at day 24 using the OARSI grading scale for histological evaluation of articular cartilage. RESULTS: The IL-1Ra concentration in PS24h and PCS was significantly higher than in PS. In model 1, inflammation- and cartilage matrix degradation-related genes were upregulated after 48 h in all treatment groups versus untreated controls. Cartilage matrix molecules, aggrecan and collagens, were downregulated in PS24h- and PCS- treated pellets versus untreated controls. Growth factor signalling genes were upregulated-FGF7 in all treatment groups, BMP2 in PS24h-, and INHBA in PCS-treated- compared with untreated controls. In model 2, the OARSI score at day 24 was not significantly different between treatment groups. MAIN LIMITATIONS: Results from in vitro models cannot be directly translated to in vivo situations. CONCLUSIONS: In vitro treatment with conditioned serum did not alleviate IL-1ß-induced responses in chondrocyte pellets or lead to morphological improvement in osteoarthritic cartilage explants.

6.
Article in English | MEDLINE | ID: mdl-34909684

ABSTRACT

AIMS: To treat osteoarthritic chondrocytes and thereby reduce the inflammation with a drug combination that primarily affects 5-HT- and ATP-evoked Ca2+ signaling. In osteoarthritic chondrocytes, Ca2+ signaling is elevated, resulting in increased production of ATP and inflammatory mediators. The expression of TLR4 and Na+/K+-ATPase was used to evaluate the inflammatory status of the cells. MAIN METHODS: Equine chondrocytes were collected from joints with mild structural osteoarthritic changes and cultured in monolayers. The cells were treated with a combination of bupivacaine (1 pM) and sildenafil (1 â€‹µM) in combination with vitamin D3 (100 â€‹nM). A high-throughput screening system, the Flexstation 3 microplate reader, was used to measure intra- and extracellular Ca2+ signaling after exposure to 5-HT, glutamate, or ATP. Expression of inflammatory receptors was assessed by Western blotting. KEY FINDINGS: Drug treatment substantially reduced 5-HT- and ATP-evoked intracellular Ca2+ release and TLR4 expression compared to those in untreated chondrocytes. The combination of sildenafil, vitamin D3 together with metformin, as the ability to take up glucose is limited, increased Na+/K+-ATPase expression. SIGNIFICANCE: The combination of these three therapeutic substances at concentrations much lower than usually used, reduced expression of the inflammatory receptor TLR4 and increased the cell membrane enzyme Na+/K+-ATPase, which regulates cell volume and reduces increased intracellular Ca2+ concentrations. These remarkable results indicate that this drug combination has disease-modifying osteoarthritis drug (DMOAD) properties and may be a new clinical therapy for osteoarthritis (OA).

7.
Arterioscler Thromb Vasc Biol ; 41(3): 1218-1228, 2021 03.
Article in English | MEDLINE | ID: mdl-33472398

ABSTRACT

OBJECTIVE: COMP (cartilage oligomeric matrix protein) is abundantly expressed in the cardiovascular system, cartilage, and atherosclerotic plaques. We investigated if the total COMP (COMPtotal) and COMP neoepitope (COMPneo) with other cardiovascular markers and clinical parameters could identify symptomatic carotid stenosis. Approach and Results: Blood samples were collected from patients with symptomatic carotid stenosis (stenosis, n=50), patients with stroke without carotid stenosis but small plaques (plaque, n=50), and control subjects (n=50). COMPtotal and COMPneo were measured using an ELISA. Ninety-two cardiovascular disease markers were measured by the Olink CVD kit. The presence of native COMP and COMPneo was determined by immunohistochemistry. The concentration of COMPneo was higher and COMPtotal was lower in the stenosis group. When the concentration was compared between the stenosis and control groups, IL-1ra (interleukin-1 receptor antagonist protein), IL6 (interleukin-6), REN (Renin), MMP1 (matrix metalloproteinase-1), TRAIL-R2 (tumor necrosis factor-related apoptosis-inducing ligand receptor 2), ITGB1BP2 (integrin beta 1 binding protein 2), and COMPneo were predictive of stenosis. Conversely, KLK6 (kallikrein-6), COMPtotal, NEMO (nuclear factor-kappa-B essential modulator), SRC (Proto-oncogene tyrosine-protein kinase Src), SIRT2 (SIR2-like protein), CD40 (cluster of differentiation 40), TF (tissue factor), MP (myoglobin), and RAGE (receptor for advanced glycation end-products) were predictive of the control group. Model reproducibility was good with the receiver operating characteristic plot area under the curve being 0.86. When comparing the plaque group and stenosis group, COMPneo, GAL (galanin), and PTX3 (pentraxin-related protein PTX3) were predictive of stenosis. Model reproducibility was excellent (receiver operating characteristic plot area under the curve 0.92). COMPneo was detected in smooth muscle-, endothelial-, and foam-cells in carotid stenosis. CONCLUSIONS: Degradation of COMP may be associated with atherosclerosis progression and generation of a specific COMP fragment-COMPneo. This may represent a novel biomarker that together with COMPtotal and other risk-markers could be used to identify symptomatic carotid stenosis. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Carotid Stenosis/blood , Cartilage Oligomeric Matrix Protein/blood , Cartilage Oligomeric Matrix Protein/immunology , Epitopes/blood , Aged , Biomarkers/blood , Biomarkers/metabolism , Carotid Stenosis/immunology , Cartilage Oligomeric Matrix Protein/metabolism , Case-Control Studies , Disease Progression , Epitopes/metabolism , Female , Humans , Male , Middle Aged , Models, Cardiovascular , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/metabolism , Proto-Oncogene Mas , Stroke/blood , Stroke/immunology
8.
PLoS One ; 14(10): e0223648, 2019.
Article in English | MEDLINE | ID: mdl-31596904

ABSTRACT

Network coupled cells, such as astrocytes, regulate their cellular homeostasis via Ca2+ signals spread between the cells through gap junctions. Intracellular Ca2+ release is controlled by different signaling pathways that can be stimulated by ATP, glutamate and serotonin (5-HT). Based on our findings, all these pathways are influenced by inflammatory agents and must be restored to fully recover the Ca2+ signaling network. An ultralow concentration of the local anesthetic agent bupivacaine reduced 5-HT-evoked intracellular Ca2+ release, and an ultralow concentration of the phosphodiesterase-5 inhibitor sildenafil in combination with vitamin D3 reduced ATP-evoked intracellular Ca2+ release. Combinations of these three substances downregulated 5-HT-, glutamate- and ATP-evoked intracellular Ca2+ release to a more normal Ca2+ signaling state. Furthermore, inflammatory Toll-like receptor 4 expression decreased with a combination of these three substances. Substance P receptor neurokinin (NK)-1 expression was reduced by ultralow concentrations of bupivacaine. Here, bupivacaine and sildenafil (at extremely low concentrations) combined with vitamin D3 have potential anti-inflammatory properties. According to the present study, drug combinations at the right concentrations, especially extremely low concentrations of bupivacaine and sildenafil, affect different cellular biochemical mechanisms and represent a potential solution for downregulating inflammatory parameters, thereby restoring cells or networks to normal physiological homeostasis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Astrocytes/drug effects , Bupivacaine/pharmacology , Cholecalciferol/pharmacology , Phosphodiesterase 5 Inhibitors/pharmacology , Sildenafil Citrate/pharmacology , Vitamins/pharmacology , Adenosine Triphosphate/metabolism , Animals , Astrocytes/metabolism , Brain/cytology , Calcium Signaling , Cells, Cultured , Drug Synergism , Rats , Rats, Sprague-Dawley
9.
Scand J Pain ; 19(4): 639-649, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31251727

ABSTRACT

BACKGROUND AND AIMS: Gap junction-coupled cells form networks in different organs in the body. These networks can be affected by inflammatory stimuli and become dysregulated. Cell signaling is also changed through connexin-linked gap junctions. This alteration affects the surrounding cells and extracellular matrix in organs. These changes can cause the spread of inflammatory substances, thus affecting other network-linked cells in other organs in the body, which can give rise to systemic inflammation, which in turn can lead to pain that can turn into chronic. METHODS: This is a review based on literature search and our own research data of inflammatory stimuli that can affect different organs and particularly gap-junction-coupled cells throughout the body. CONCLUSIONS: A remaining question is which cell type or tissue is first affected by inflammatory stimuli. Can endotoxin exposure through the air, water and body start the process and are mast cells the first target cells that have the capacity to alter the physiological status of gap junction-coupled cells, thereby causing breakdown of different barrier systems? IMPLICATIONS: Is it possible to address the right cellular and biochemical parameters and restore inflammatory systems to a normal physiological level by therapeutic strategies?

10.
Article in English | MEDLINE | ID: mdl-30788133

ABSTRACT

BACKGROUND: Piglet diarrhoea is considered a worldwide problem resulting in animal welfare problems and financial losses for pig farmers. Porcine rotavirus and the coccidian parasite Cystoisospora suis (C. suis) are considered two important pathogens associated with diarrhoea in piglets during the suckling and early post weaning periods. To obtain an overview on the prevalence of porcine rotavirus and C. suis in piglet producing herds with solid floors and age segregated rearing, faecal sampling of 791 litters in 81 farms was performed. RESULTS: For porcine rotavirus, faecal samples were analysed using a sandwich ELISA. The overall prevalence of rotavirus in the examined herds was 11.4 ± 17.7% at 2 weeks, 56.8 ± 30.7% at 4 weeks and 71.1 ± 29.1% at 6 weeks of age and the accumulated prevalence was 49, 97 and 100%. To detect C. suis, faecal samples were analysed using sedimentation. The overall prevalence of C. suis in the examined herds was 11.9 ± 15.1% at 2 weeks of age, 10.7 ± 16.7% at 4 weeks and 8.7 ± 15.3% at 6 weeks of age and the accumulated prevalence was 56, 76 and 85%. The number of empty days between farrowing batches did influence the shedding of rotavirus at 2 weeks of age but not later. Regarding C. suis, no difference in prevalence was correlated to the number of days between consecutive farrowing batches. CONCLUSIONS: Our study confirmed that rotavirus should be regarded as an ubiquitous virus that can be expected to be present in almost every pig herd in Sweden. The study also demonstrated that the number of infected litters increased from birth to 6 weeks of age. Secondly, it showed that C. suis frequently occurred in pig herds and that the number of infected litters was rather stable from two to 6 weeks of age. Consequently, both rotavirus and C. suis may play a role in intestinal disturbances in piglets during the suckling and post weaning periods despite age segregated rearing, at least in systems with solid floors. However, as this study was carried out in herds without reported problems with diarrhoea or poor weight gain, the role of these pathogens should not be overestimated.

11.
Cartilage ; 10(4): 491-503, 2019 10.
Article in English | MEDLINE | ID: mdl-29701083

ABSTRACT

OBJECTIVE: Chondrocytes are responsible for remodeling and maintaining the structural and functional integrity of the cartilage extracellular matrix. Because of the absence of a vascular supply, chondrocytes survive in a relatively hypoxic environment and thus have limited regenerative capacity during conditions of cellular stress associated with inflammation and matrix degradation, such as osteoarthritis (OA). Glucose is essential to sustain chondrocyte metabolism and is a precursor for key matrix components. In this study, we investigated the importance of glucose as a fuel source for matrix repair during inflammation as well as the effect of glucose on inflammatory mediators associated with osteoarthritis. DESIGN: To create an OA model, we used equine chondrocytes from 4 individual horses that were differentiated into cartilage pellets in vitro followed by interleukin-1ß (IL-1ß) stimulation for 72 hours. The cells were kept at either normoglycemic conditions (5 mM glucose) or supraphysiological glucose concentrations (25 mM glucose) during the stimulation with IL-1ß. RESULTS: We found that elevated glucose levels preserve glucose uptake, hyaluronan synthesis, and matrix integrity, as well as induce anti-inflammatory actions by maintaining low expression of Toll-like receptor-4 and low secretion of glutamate. CONCLUSIONS: Adequate supply of glucose to chondrocytes during conditions of inflammation and matrix degradation interrupts the detrimental inflammatory cycle and induces synthesis of hyaluronan, thereby promoting cartilage repair.


Subject(s)
Chondrocytes/metabolism , Glucose/metabolism , Glutamic Acid/metabolism , Hyaluronic Acid/biosynthesis , Animals , Cartilage, Articular/cytology , Cartilage, Articular/metabolism , Cell Differentiation/physiology , Cells, Cultured , Extracellular Matrix/metabolism , Gene Expression Regulation/physiology , Glycolysis/physiology , Horses , Hyaluronan Synthases/biosynthesis , Hyaluronan Synthases/genetics , Interleukin-1beta/immunology
12.
Vet Anim Sci ; 8: 100078, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32734095

ABSTRACT

Osteoarthritis is a pain-associated progressive disease and pain mediators, such as opioid receptors, expressed in articular cartilage could represent novel therapeutic targets. Acute and chronic stages of OA indicate different metabolic abilities of the chondrocytes depending on inflammatory state. This study aimed to investigate the response of healthy and osteoarthritic chondrocytes and their expression and release of pain mediators in response to acute inflammation. Interleukin-1 beta (IL-1ß) and lipopolysaccharide (LPS) were used to induce an acute inflammatory response in cultured equine chondrocytes harvested from healthy joints (HC) and osteoarthritic joints (OAC), the latter representing acute exacerbation of a chronic inflammatory state. Intracellular Ca2+ release was determined after exposure to serotonin (5-hydroxytryptamine (5-HT), glutamate or ATP. Protein expression levels of F- and G-actin, representing actin rearrangement, and opioid receptors were investigated. Glutamate concentrations in culture media were measured. Cartilage was immunohistochemically stained for µ (MOR), κ (KOR), and δ (DOR) opioid receptors. Upon exposure to acute inflammatory stimuli, OAC showed increased intracellular Ca2+ release after 5-HT stimulation and increased expression of MOR and KOR. When cells were stimulated by inflammatory mediators, glutamate release was increased in both HC and OAC. Immunostaining for MOR was strong in OA cartilage, whereas KOR was less strongly expressed. DOR was not expressed by cultured HC and OAC and immunostaining of OA cartilage equivocal. We show that chondrocytes in different inflammatory stages react differently to the neurotransmitter 5-HT with respect to intracellular Ca2+ release and expression of peripheral pain mediators. Our findings suggest that opioids and neurotransmitters are important in the progression of equine OA. The inflammatory stage of OA (acute versus chronic) should be taken into consideration when therapeutic strategies are being developed.

13.
J Neuroinflammation ; 15(1): 321, 2018 Nov 17.
Article in English | MEDLINE | ID: mdl-30447700

ABSTRACT

BACKGROUND: Pharmaceutical treatment with probable anti-inflammatory substances that attack cells in various ways including receptors, ion channels, or transporter systems may slow down the progression of inflammatory conditions. Astrocytes and microglia are the most prominent target cells for inflammation in the central nervous system. Their responses upon inflammatory stimuli work through the NO/cyclic GMP/protein kinase G systems that can downregulate the ATP-induced Ca2+ signaling, as well as G protein activities which alter Na+ transporters including Na+/K+-ATPase pump activity, Toll-like receptor 4 (TLR4), glutamate-induced Ca2+ signaling, and release of pro-inflammatory cytokines. The rationale for this project was to investigate a combination of pharmaceutical substances influencing the NO and the Gi/Gs activations of inflammatory reactive cells in order to make the cells return into a more physiological state. The ATP-evoked Ca2+ signaling is important maybe due to increased ATP release and subsequent activation of purinergic receptors. A balance between intercellular Ca2+ signaling through gap junctions and extracellular signaling mediated by extracellular ATP may be important for physiological function. METHODS: Astrocytes in primary cultures were incubated with lipopolysaccharide in a physiological glucose concentration for 24 h to induce inflammatory reactivity. The probable anti-inflammatory substances sildenafil and 1α,25-Dihydroxyvitamin D3 together with endomorphin-1, naloxone, and levetiracetam, were used in the presence of high glucose concentration in the medium to restore the cells. Glutamate-, 5-HT-, and ATP-evoked intracellular Ca2+ release, Na+/K+-ATPase expression, expression of inflammatory receptors, and release of tumor necrosis factor alpha were measured. RESULTS: Sildenafil in ultralow concentration together with 1α,25-Dihydroxyvitamin D3 showed most prominent effects on the ATP-evoked intracellular Ca2+ release. The µ-opioid agonist endomorphin-1, the µ-opioid antagonist naloxone in ultralow concentration, and the antiepileptic agent levetiracetam downregulated the glutamate-evoked intracellular Ca2+ release and TLR4. The combination of the pharmaceutical substances in high glucose concentration downregulated the glutamate- and ATP-evoked Ca2+ signaling and the TLR4 expression and upregulated the Na+/K+-ATPase pump. CONCLUSION: Pharmaceutical treatment with the combination of substances that have potential anti-inflammatory effects, which attack different biochemical mechanisms in the cells may exert decisive effects to downregulate neuroinflammation in the nervous system.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Astrocytes/drug effects , Brain/cytology , Cytokines/metabolism , Pharmaceutical Preparations/chemistry , Adenosine Triphosphate/metabolism , Animals , Animals, Newborn , Calcium/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Glial Fibrillary Acidic Protein/metabolism , Glucose/pharmacology , Glutamic Acid/metabolism , Lipopolysaccharides/pharmacology , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Signal Transduction , Sodium-Potassium-Exchanging ATPase/metabolism
14.
Res Vet Sci ; 118: 466-476, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29747133

ABSTRACT

Osteoarthritis is an inflammatory and degenerative joint disease commonly affecting horses. To identify genes of relevance for cartilage pathology in osteoarthritis we studied the time-course effects of interleukin (IL)-1ß on equine articular cartilage. Articular cartilage explants from the distal third metacarpal bone were collected postmortem from three horses without evidence of joint disease. The explants were stimulated with IL-1ß for 27 days and global gene expression was measured by microarray. Gene expression was compared to that of unstimulated explants at days 3, 9, 15, 21 and 27. Release of inflammatory proteins was measured using Proximity Extension Assay. Stimulation with IL-1ß led to time-dependent changes in gene expression related to inflammation, the extracellular matrix (ECM), and phenotypic alterations. Gene expression and protein release of cytokines, chemokines, and matrix-degrading enzymes increased in the stimulated explants. Collagen type II was downregulated from day 15, whereas other ECM molecules were downregulated earlier. In contrast molecules involved in ECM signaling (perlecan, chondroitin sulfate proteoglycan 4, and syndecan 4) were upregulated. At the late time points, genes related to a chondrogenic phenotype were downregulated, and genes related to a hypertrophic phenotype were upregulated, suggesting a transition towards hypertrophy later in the culturing period. The data suggest that this in vitro model mimics time course events of in vivo inflammation in OA and it may be valuable as an in vitro tool to test treatments and to study disease mechanisms.


Subject(s)
Cartilage, Articular/metabolism , Gene Expression Regulation , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Animals , Cells, Cultured , Chondrocytes , Extracellular Matrix , Horses , Osteoarthritis
15.
Heliyon ; 4(1): e00525, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29560438

ABSTRACT

Chondrocytes are effectively involved in the pathophysiological processes of inflammation in joints. They form cellular processes in the superficial layer of the articular cartilage and form gap junction coupled syncytium to facilitate cell-to-cell communication. However, very little is known about their physiological cellular identity and communication. The aim with the present work is to evaluate the physiological behavior after stimulation with the inflammatory inducers interleukin-1ß and lipopolysaccharide. The cytoskeleton integrity and intracellular Ca2+ release were assessed as indicators of inflammatory state. Cytoskeleton integrity was analyzed through cartilage oligomeric matrix protein and actin labeling with an Alexa 488-conjugated phalloidin probe. Ca2+ responses were assessed through the Ca2+ sensitive fluorophore Fura-2/AM. Western blot analyses of several inflammatory markers were performed. The results show reorganization of the actin filaments. Glutamate, 5-hydoxytryptamine, and ATP evoked intracellular Ca2+ release changed from single peaks to oscillations after inflammatory induction in the chondrocytes. The expression of toll-like receptor 4, the glutamate transporters GLAST and GLT-1, and the matrix metalloproteinase-13 increased. This work demonstrates that chondrocytes are a key part in conditions that lead to inflammation in the cartilage. The inflammatory inducers modulate the cytoskeleton, the Ca2+ signaling, and several inflammatory parameters. In conclusion, our data show that the cellular responses to inflammatory insults from healthy and inflammatory chondrocytes resemble those previously observed in astrocyte and cardiac fibroblasts networks.

16.
Heliyon ; 3(10): e00406, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29022008

ABSTRACT

Cardiac fibroblasts, which are abundant in heart tissue, are involved not only in extracellular matrix homeostasis and repair, but also in cardiac remodeling after a myocardial infarction that, in turn, can lead to loss of cardiac function and heart failure. Ca2+ signaling is functionally important in many cell types, but the roles of fibroblast signaling and inflammation in the pathogenesis of heart disease are unclear. Here, we tested the hypothesis that inflammatory activation affects cardiac fibroblasts, both in terms of Ca2+ signaling and their capacity for intercellular communication through the gap junction channel protein connexin 43 (Cx43). We examined Ca2+ responses induced by known modulators of cardiac function such as glutamate, ATP and 5-hydroxytryptamine (5-HT) in human cardiac fibroblasts, under normal and inflammatory conditions. We showed that activation of human cardiac fibroblasts by lipopolysaccharide (LPS) for 24 h altered Ca2+ signaling, increased TLR4 and decreased Cx43 expression. In the fibroblasts, LPS treatment increased glutamate-evoked and decreased 5-HT-evoked Ca2+ signals. LPS activation also induced increased secretion of glutamate and proinflammatory cytokines from these cells. In summary, we propose that inflammatory stimuli can affect intracellular Ca2+ release, Cx43 expression, glutamate release and cytokine secretion in human cardiac fibroblasts. Inflammatory conditions may, therefore, impair intercellular network communication between fibroblasts and cardiomyocytes potentially contributing to cardiac dysfunction.

17.
IBRO Rep ; 1: 1-9, 2016 Dec.
Article in English | MEDLINE | ID: mdl-30135924

ABSTRACT

This study aimed to test pharmaceutical compounds targeting astrocytes showing inflammatory dysregulation. The primary rat brain cultures were treated with different batches of serum with or without microglia added to make the cells inflammatory-reactive. Lipopolysaccharide (LPS) and tryptase were used as inflammatory inducers. Expression levels of Toll-like receptor 4 (TLR4), Na+/K+-ATPase, and matrix metalloprotease-13 (MMP-13), as well as actin filament organization, pro-inflammatory cytokines, and intracellular Ca2+ release, were evaluated. LPS combined with tryptase upregulated TLR4 expression, whereas Na+/K+-ATPase expression was downregulated, ATP-evoked Ca2+ transients were increased, actin filaments were reorganized and ring structures instead of stress fibers were observed. Other aims of the study were to prevent astrocytes from becoming inflammatory-reactive and to restore inflammatory dysregulated cellular changes. A combination of the µ-opioid antagonist (-)-naloxone in ultra-low concentrations, the non-addictive µ-opioid agonist (-)-linalool, and the anti-epileptic agent levetiracetam was examined. The results indicated that this drug cocktail prevented the LPS- and tryptase-induced inflammatory dysregulation. The drug cocktail could also restore the LPS- and tryptase-treated cells back to a normal physiological level in terms of the analyzed parameters.

18.
J Inflamm (Lond) ; 12: 44, 2015.
Article in English | MEDLINE | ID: mdl-26213498

ABSTRACT

Several organs in the body comprise cells coupled into networks. These cells have in common that they are excitable but do not express action potentials. Furthermore, they are equipped with Ca(2+) signaling systems, which can be intercellular and/or extracellular. The transport of small molecules between the cells occurs through gap junctions comprising connexin 43. Examples of cells coupled into networks include astrocytes, keratinocytes, chondrocytes, synovial fibroblasts, osteoblasts, connective tissue cells, cardiac and corneal fibroblasts, myofibroblasts, hepatocytes, and different types of glandular cells. These cells are targets for inflammation, which can be initiated after injury or in disease. If the inflammation reaches the CNS, it develops into neuroinflammation and can be of importance in the development of systemic chronic inflammation, which can manifest as pain and result in changes in the expression and structure of cellular components. Biochemical parameters of importance for cellular functions are described in this review.

19.
Connect Tissue Res ; 56(4): 315-25, 2015.
Article in English | MEDLINE | ID: mdl-25803623

ABSTRACT

The molecular aspects of inflammation were investigated in equine articular cartilage explants using quantitative proteomics. Articular cartilage explants were stimulated with interleukin (IL)-1ß in vitro for 25 days, and proteins released into cell culture media were chemically labeled with isobaric mass tags and analyzed by liquid chromatography-tandem mass spectrometry. A total of 127 proteins were identified and quantified in media from explants. IL-1ß-stimulation resulted in an abundance of proteins related to inflammation, including matrix metalloproteinases, acute phase proteins, complement components and IL-6. Extracellular matrix (ECM) molecules were released at different time points, and fragmentation of aggrecan and cartilage oligomeric matrix protein was observed at days 3 and 6, similar to early-stage OA in vivo. Degradation products of the collagenous network were observed at days 18 and 22, similar to late-stage OA. This model displays a longitudinal quantification of released molecules from the ECM of articular cartilage. Identification of dynamic changes of extracellular matrix molecules in the secretome of equine explants stimulated with IL-1ß over time may be useful for identifying components released at different time points during the spontaneous OA process.


Subject(s)
Cartilage, Articular/metabolism , Extracellular Matrix/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Osteoarthritis/metabolism , Animals , Cartilage, Articular/pathology , Extracellular Matrix/pathology , Horses , Inflammation/metabolism , Inflammation/pathology , Osteoarthritis/pathology
20.
J Anat ; 225(5): 548-68, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25175365

ABSTRACT

Formation of synovial joints includes phenotypic changes of the chondrocytes and the organisation of their extracellular matrix is regulated by different factors and signalling pathways. Increased knowledge of the normal processes involved in joint development may be used to identify similar regulatory mechanisms during pathological conditions in the joint. Samples of the distal radius were collected from prenatal and postnatal equine growth plates, zones of Ranvier and articular cartilage with the aim of identifying Notch signalling components and cells with stem cell-like characteristics and to follow changes in matrix protein localisation during joint development. The localisation of the Notch signalling components Notch1, Delta4, Hes1, Notch dysregulating protein epidermal growth factor-like domain 7 (EGFL7), the stem cell-indicating factor Stro-1 and the matrix molecules cartilage oligomeric matrix protein (COMP), fibromodulin, matrilin-1 and chondroadherin were studied using immunohistochemistry. Spatial changes in protein localisations during cartilage maturation were observed for Notch signalling components and matrix molecules, with increased pericellular localisation indicating new synthesis and involvement of these proteins in the formation of the joint. However, it was not possible to characterise the phenotype of the chondrocytes based on their surrounding matrix during normal chondrogenesis. The zone of Ranvier was identified in all horses and characterised as an area expressing Stro-1, EGFL7 and chondroadherin with an absence of COMP and Notch signalling. Stro-1 was also present in cells close to the perichondrium, in the articular cartilage and in the fetal resting zone, indicating stem cell-like characteristics of these cells. The presence of stem cells in the articular cartilage will be of importance for the repair of damaged cartilage. Perivascular chondrocytes and hypertrophic cells of the cartilage bone interface displayed positive staining for EGFL7, which is a novel finding and suggests a role of EGFL7 in the vascular infiltration of growth cartilage.


Subject(s)
Biomarkers/metabolism , Cartilage, Articular/growth & development , Chondrocytes/physiology , Growth Plate/cytology , Horses/growth & development , Animals , Cartilage, Articular/cytology , Cell Differentiation , Chondrocytes/cytology , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...