Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Neurosci Methods ; 331: 108532, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31785300

ABSTRACT

BACKGROUND: Previous studies have measured whisker movements and locomotion to characterise mouse models of neurodegenerative disease. However, these studies have always been completed in isolation, and do not involve standardized procedures for comparisons across multiple mouse models and background strains. NEW METHOD: We present a standard method for conducting whisker movement and locomotion studies, by carrying out qualitative scoring and quantitative measurement of whisker movements from high-speed video footage of mouse models of Amyotrophic Lateral Sclerosis, Huntington's disease, Parkinson's disease, Alzheimer's disease, Cerebellar Ataxia, Somatosensory Cortex Development and Ischemic stroke. RESULTS: Sex, background strain, source breeder and genotype all affected whisker movements. All mouse models, apart from Parkinson's disease, revealed differences in whisker movements during locomotion. R6/2 CAG250 Huntington's disease mice had the strongest behavioural phenotype. Robo3R3-5-CKO and RIM-DKOSert mouse models have abnormal somatosensory cortex development and revealed significant changes in whisker movements during object exploration. COMPARISON WITH EXISTING METHOD(S): Our results have good agreement with past studies, which indicates the robustness and reliability of measuring whisking. We recommend that differences in whisker movements of mice with motor deficits can be captured in open field arenas, but that mice with impairments to sensory or cognitive functioning should also be filmed investigating objects. Scoring clips qualitatively before tracking will help to structure later analyses. CONCLUSIONS: Studying whisker movements provides a quantitative measure of sensing, motor control and exploration. However, the effect of background strain, sex and age on whisker movements needs to be better understood.


Subject(s)
Neurodegenerative Diseases , Vibrissae , Animals , Cognition , Locomotion , Mice , Reproducibility of Results , Somatosensory Cortex
2.
J Neurosci Methods ; 300: 103-111, 2018 04 15.
Article in English | MEDLINE | ID: mdl-28472678

ABSTRACT

BACKGROUND: Motor dysfunction is a major component of the Huntington's disease (HD) phenotype, both in patients and animal models. Motor function in mice is usually measured using tests that involve a novel environment, or require a degree of learning, which creates potential confounds in animals, such as anxiety and/or learning. NEW METHOD: We propose that studying whisker control provides a more naturalistic way to measure motor function in HD mice. To this end we tested three strains of HD mice; R6/2 (CAG250), zQ175 and Hdh (CAG50, 150 and 250) mice. RESULTS: We discovered a clear and progressive whisking deficit in the most severe model, the R6/2 CAG250 mouse. At 10 weeks, R6/2 mice showed an increase in whisking movements, which may be a correlate of the hyperkinesia seen in HD patients. By 18 weeks the R6/2 mice showed a reduction in whisking movements. Hdh Q250 mice showed a hyperkinetic profile at 10 weeks, approximately 4 months before other motor deficits have previously been reported in these mice. Q175 mice showed very little change in whisking behaviour, apart from a transient increase in retraction velocity at 10 weeks. COMPARISONS WITH EXISTING METHODS: Our findings suggest that whisking may be a more sensitive test of motor function in HD mice than more commonly used methods, such as the rotarod. CONCLUSIONS: Our data suggest that whisking deficits represent a novel way of assessing the progression of the motor phenotype, and are early indicators for reversal of phenotype studies, such as drug trials.


Subject(s)
Behavior, Animal/physiology , Huntington Disease/physiopathology , Motor Activity/physiology , Vibrissae/physiology , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic
3.
J Huntingtons Dis ; 5(1): 19-32, 2016.
Article in English | MEDLINE | ID: mdl-27031731

ABSTRACT

BACKGROUND: Impairments in energy metabolism are implicated in Huntington's disease (HD) pathogenesis. Reduced levels of the mitochondrial enzyme succinate dehydrogenase (SDH), the main element of complex II, are observed post mortem in the brains of HD patients, and energy metabolism defects have been identified in both presymptomatic and symptomatic HD patients. OBJECTIVE: Chemical preconditioning with 3-nitropropionic acid (3-NP), an irreversible inhibitor of SDH, has been shown to increase tolerance against experimental hypoxia in both heart and brain. Here we studied the effect of chronic preconditioning in the R6/2 mouse model of HD using mice carrying CAG repeat lengths of either 250 or 400 repeats. Both are transgenic fragment models, with 250CAG mice having a more rapid disease progression than 400CAG mice. METHODS: Low doses of 3-NP (24 mg/kg) were administered via the drinking water and the effect on phenotype progression and cognition function assessed. RESULTS: After 3-NP treatment there were significant improvements in all aspects of the behavioural phenotype, apart from body weight, with timing and magnitude of improvements dependent on both CAG repeat length and sex. Specifically, a delay in the deterioration of general health (as shown by delayed onset of glycosuria and increased survival) was seen in both male and female 400CAG mice and in female 250CAG mice and was consistent with improved appearance of 3-NP treated R6/2 mice. Male 250CAG mice showed improvements but these were short term, and 3-NP treatment eventually had deleterious effects on their survival rate. When cognitive performance of 250CAG mice was assessed using a two-choice discrimination touchscreen task, we found that female mice showed significant improvements. DISCUSSION: Together, our results support the idea that energy metabolism contributes to the pathogenesis of HD, and suggest that improving energy deficits might be a therapeutically useful target.


Subject(s)
Aging/drug effects , Cognitive Dysfunction/prevention & control , Huntington Disease , Nitro Compounds/pharmacology , Nitro Compounds/therapeutic use , Propionates/pharmacology , Propionates/therapeutic use , Trinucleotide Repeats/genetics , Animals , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/physiopathology , Disease Models, Animal , Female , Humans , Huntington Disease/drug therapy , Huntington Disease/genetics , Huntington Disease/physiopathology , Male , Mice , Succinate Dehydrogenase
4.
J Neurosci Methods ; 265: 56-71, 2016 05 30.
Article in English | MEDLINE | ID: mdl-26219658

ABSTRACT

BACKGROUND: Progressive cognitive impairments are a major, debilitating symptom of neurodegenerative disorders such as Alzheimer's disease (AD) and Huntington's disease (HD). Developing treatments to slow or prevent cognitive decline is a key challenge for these fields. Unfortunately, preclinical therapeutic testing has not kept pace with molecular advances, and the methods for systematic cognitive testing in mice remain largely unchanged. Although higher throughput semi-automated systems exist, the lack of a 'positive control' (i.e. a drug or treatment that works) makes it challenging to test their sensitivity and predict usefulness for preclinical drug testing. NEW METHOD: We used an allelic series of transgenic HD mice to test the sensitivity and flexibility of two cognitive testing systems; a semi-automated touchscreen system and a traditional water-based task, the 2-choice swim tank. RESULTS: We found significant differences in performance of HD mice with different CAG repeats, with timing and severity of deficits dependent on CAG repeat length. We also found deficits in long-term memory retention that have not been reported previously. COMPARISON WITH EXISTING METHOD(S): Both systems were useful for detecting deficits, and were sensitive enough to detect small changes (10-20%) in cognitive performance. CONCLUSIONS: While the touchscreen system is more sensitive and can identify deficits up to 10 weeks earlier than the 2-choice swim tank, both tests detected similar patterns of deficit progression in HD mice, regardless of CAG repeat length. Thus, although it has its limitations, the 2-choice swim tank remains a simple, cheap and accessible system for assessing cognitive function.


Subject(s)
Huntington Disease/psychology , Neuropsychological Tests , Animals , Automation, Laboratory , Choice Behavior , Cognition , Discrimination Learning , Disease Models, Animal , Disease Progression , Equipment Design , Huntington Disease/genetics , Memory Disorders/genetics , Memory Disorders/psychology , Memory, Long-Term , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Reaction Time , Severity of Illness Index , Swimming , Time Factors , Trinucleotide Repeat Expansion
5.
Brain Behav ; 4(5): 675-86, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25328844

ABSTRACT

BACKGROUND: In addition to their cognitive and motor deficits, R6/2 mice show a progressive disintegration in circadian rhythms that mirrors the problems associated with sleep-wake disturbances experienced by patients with Huntington's disease (HD). It has been shown previously that motor and cognitive performance, as well as survival, can be improved in transgenic mouse models of HD through the provision of environmental enrichment. METHODS: We compared the effect of two different overnight entrainment paradigms presented either separately or in combination. The first was environmental enrichment, the second was temporal food-entrainment. Environmental enrichment was provided in the dark period (the natural active period for mice) in the form of access to a Perspex playground containing running wheels, tunnels, climbing frame, ropes and chew blocks. Food entrainment was imposed by allowing access to food only during the dark period. We assessed a number of different aspects of function in the mice, measuring general health (by SHIRPA testing, body temperature and body weight measurements), cognitive performance in the touchscreen and locomotor behavior in the open field. RESULTS: There were no significant differences in cognitive performance between groups on different schedules. Environmental enrichment delayed the onset of general health deterioration, while food entrainment slowed the loss of body weight, aided the maintenance of body temperature and improved locomotor behavior. Effects were limited however, and in combination had deleterious effects on survival. CONCLUSIONS: Our results support previous studies showing that environmental enrichment can be beneficial and might be used to enhance the quality of life of HD patients. However, improvements are selective and 'enrichment' per se is likely to only be useful as an adjunct to a more direct therapy.


Subject(s)
Food , Health Status , Huntington Disease/physiopathology , Social Environment , Age Factors , Animals , Body Temperature/physiology , Body Weight/physiology , Circadian Rhythm , Disease Models, Animal , Locomotion/physiology , Male , Mice , Phenotype , Social Behavior
6.
PLoS One ; 5(2): e9077, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-20174443

ABSTRACT

BACKGROUND: Environmental enrichment (EE) in laboratory animals improves neurological function and motor/cognitive performance, and is proposed as a strategy for treating neurodegenerative diseases. EE has been investigated in the R6/2 mouse model of Huntington's disease (HD), where increased social interaction, sensory stimulation, exploration, and physical activity improved survival. We have also shown previously that HD patients and R6/2 mice have disrupted circadian rhythms, treatment of which may improve cognition, general health, and survival. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effects of EE on the behavioral phenotype and circadian activity of R6/2 mice. Our mice are typically housed in an "enriched" environment, so the EE that the mice received was in addition to these enhanced housing conditions. Mice were either kept in their home cages or exposed daily to the EE (a large playground box containing running wheels and other toys). The "home cage" and "playground" groups were subdivided into "handling" (stimulated throughout the experimental period) and "no-handling" groups. All mice were assessed for survival, body weight, and cognitive performance in the Morris water maze (MWM). Mice in the playground groups were more active throughout the enrichment period than home cage mice. Furthermore, R6/2 mice in the EE/no-handling groups had better survival than those in the home cage/no-handling groups. Sex differences were seen in response to EE. Handling was detrimental to R6/2 female mice, but EE increased the body weight of male R6/2 and WT mice in the handling group. EE combined with handling significantly improved MWM performance in female, but not male, R6/2 mice. CONCLUSIONS/SIGNIFICANCE: We show that even when mice are living in an enriched home cage, further EE had beneficial effects. However, the improvements in cognition and survival vary with sex and genotype. These results indicate that EE may improve the quality of life of HD patients, but we suggest that EE as a therapy should be tailored to individuals.


Subject(s)
Disease Models, Animal , Environment Design , Huntington Disease/genetics , Huntington Disease/physiopathology , Animal Husbandry/methods , Animals , Circadian Rhythm , Female , Genotype , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Motor Activity , Rotarod Performance Test , Sex Factors , Survival Analysis , Swimming , Trinucleotide Repeat Expansion/genetics
7.
Learn Mem ; 15(7): 516-23, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18612068

ABSTRACT

The touchscreen testing method for rodents is a computer-automated behavioral testing method that allows computer graphic stimuli to be presented to rodents and the rodents to respond to the computer screen via a nose-poke directly to the stimulus. The advantages of this method are numerous; however, a systematic study of the parameters that affect learning has not yet been conducted. We therefore sought to optimize stimuli and task parameters in this method. We found that when parameters were optimized, Lister Hooded rats could learn rapidly using this method, solving a discrimination of two-dimensional stimuli to a level of 80% within five to six sessions lasting approximately 30 min each. In a final experiment we tested both male and female rats of the albino Sprague-Dawley strain, which are often assumed to have visual abilities far too poor to be useful for studies of visual cognition. The performance of female Sprague-Dawley rats was indistinguishable from that of their male counterparts. Furthermore, performance of male Sprague-Dawley rats was indistinguishable from that of their Lister Hooded counterparts. Finally, Experiment 5 examined the ability of Lister Hooded rats to learn a discrimination between photographic stimuli. Under conditions in which parameters were optimized, rats were remarkably adept at this discrimination. Taken together, these experiments served to optimize the touchscreen method and have demonstrated its usefulness as a high-throughput method for the cognitive testing of rodents.


Subject(s)
Cognition/physiology , Discrimination Learning , Psychological Tests/standards , Animals , Female , Learning , Male , Models, Animal , Rats , Rats, Sprague-Dawley , Touch , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL