Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 17(1): 778, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29258444

ABSTRACT

BACKGROUND: The recent emergence of Zika virus (ZIKV) in Brazil and its precipitous expansion throughout the Americas has highlighted the urgent need for a rapid and reliable on-site diagnostic assay suitable for viral detection. Such point-of-need (PON), low-cost diagnostics are essential for ZIKV control in vulnerable areas with limited resources. METHODS: We developed and evaluated a ZIKV-specific field-deployable RT-iiPCR reagent set targeting the E gene for rapid detection of ZIKV in ZIKV-spiked human and mosquito specimens, and compared its performance to the Center for Disease Control and Prevention (CDC) and Pan American Health Organization (PAHO) RT-qPCR assays targeting the E and NS2B genes, respectively. RESULTS: These assays demonstrated exclusive specificity for ZIKV (African and Asian lineages), had limits of detection ranging from 10 to 100 in vitro transcribed RNA copies/µl and detection endpoints at 10 plaque forming units/ml of infectious tissue culture fluid. Analysis of human whole blood, plasma, serum, semen, urine, and mosquito pool samples spiked with ZIKV showed an agreement of 90% (k = 0.80), 92% (k = 0.82), 95% (k = 0.86), 92% (k = 0.81), 90% (k = 0.79), and 100% (k = 1), respectively, between the RT-iiPCR assay and composite results from the reference RT-qPCR assays. Overall, the concurrence between the ZIKV RT-iiPCR and the reference RT-qPCR assays was 92% (k = 0.83). CONCLUSIONS: The ZIKV RT-iiPCR has a performance comparable to the reference CDC and PAHO RT-qPCR assays but provides much faster results (~1.5 h) with a field-deployable system that can be utilized as a PON diagnostic with the potential to significantly improve the quality of the health care system in vulnerable areas.


Subject(s)
RNA, Viral/analysis , Zika Virus Infection/diagnosis , Zika Virus/genetics , Animals , Culicidae/virology , Humans , Point-of-Care Systems , RNA, Viral/blood , RNA, Viral/urine , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Zika Virus/isolation & purification , Zika Virus Infection/virology
2.
J Virol Methods ; 241: 58-63, 2017 03.
Article in English | MEDLINE | ID: mdl-27993615

ABSTRACT

Equine herpesvirus myeloencephalopathy (EHM), a major problem for the equine industry in the United States, is caused by equine herpesvirus-1 (EHV-1). In addition, EHV-1 is associated with upper respiratory disease, abortion, and chorioretinal lesions in horses. Here we describe the development and evaluation of an inexpensive, user-friendly insulated isothermal PCR (iiPCR) method targeting open reading 30 (ORF30) to detect both neuropathogenic and non-neuropathogenic strains on the field-deployable POCKIT™ device for point-of-need detection of EHV-1. The analytical sensitivity of the EHV-1 iiPCR assay was 13 genome equivalents per reaction. The assay did not cross react with ten non-target equine viral pathogens. Performance of the EHV-1 iiPCR assay was compared to two previously described real-time PCR (qPCR) assays in two laboratories by using 104 archived clinical samples. All 53 qPCR-positive and 46 of the 51 qPCR-negative samples tested positive and negative, respectively, by the iiPCR. The agreement between the two assays was 95.19% (confidence interval 90.48-99.90%) with a kappa value of 0.90. In conclusion, the newly developed EHV-1 iiPCR assay is robust to provide specificity and sensitivity comparable to qPCR assays for the detection of EHV-1 nucleic acid in clinical specimens.


Subject(s)
Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/isolation & purification , Horse Diseases/diagnosis , Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Animals , DNA, Viral/genetics , DNA, Viral/isolation & purification , Encephalomyelitis/diagnosis , Encephalomyelitis/veterinary , Encephalomyelitis/virology , Herpesviridae Infections/diagnosis , Herpesviridae Infections/virology , Herpesvirus 1, Equid/genetics , Horse Diseases/virology , Horses , Open Reading Frames/genetics , Polymerase Chain Reaction/economics , Sensitivity and Specificity , Temperature
3.
J Virol Methods ; 234: 7-15, 2016 08.
Article in English | MEDLINE | ID: mdl-27036504

ABSTRACT

Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory and reproductive disease of horses. Most importantly, EAV induces abortion in pregnant mares and can establish persistent infection in up to 10-70% of the infected stallions, which will continue to shed the virus in their semen. The objective of this study was to develop and evaluate a reverse transcription insulated isothermal polymerase chain reaction (RT-iiPCR) for the detection of EAV in semen and tissue samples. The newly developed assay had a limit of detection of 10 RNA copies and a 10-fold higher sensitivity than a previously described real-time RT-PCR (RT-qPCR). Evaluation of 125 semen samples revealed a sensitivity and specificity of 98.46% and 100.00%, respectively for the RT-qPCR assay, and 100.00% and 98.33%, respectively for the RT-iiPCR assay. Both assays had the same accuracy (99.2%, k=0.98) compared to virus isolation. Corresponding values derived from testing various tissue samples (n=122) collected from aborted fetuses, foals, and EAV carrier stallions are as follows: relative sensitivity, specificity, and accuracy of 88.14%, 96.83%, and 92.62% (k=0.85), respectively for the RT-qPCR assay, and 98.31%, 92.06%, and 95.08% (k=0.90), respectively for the RT-iiPCR assay. These results indicate that RT-iiPCR is a sensitive, specific, and a robust test enabling detection of EAV in semen and tissue samples with very considerable accuracy. Even though the RT-qPCR assay showed a sensitivity and specificity equal to virus isolation for semen samples, its diagnostic performance was somewhat limited for tissue samples. Thus, this new RT-iiPCR could be considered as an alternative tool in the implementation of EAV control and prevention strategies.


Subject(s)
Arterivirus Infections/veterinary , Equartevirus/isolation & purification , Horse Diseases/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Semen/virology , Animals , Arterivirus Infections/diagnosis , Arterivirus Infections/prevention & control , Arterivirus Infections/virology , Female , Horse Diseases/virology , Horses , Male , Open Reading Frames , Pregnancy , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity , Temperature
4.
J Virol Methods ; 207: 66-72, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24992669

ABSTRACT

Equine influenza (EI) is an acute, highly contagious viral respiratory disease of equids. Currently, equine influenza virus (EIV) subtype H3N8 continues to be the most important respiratory pathogen of horses in many countries around the world. The need to achieve a rapid diagnosis and to implement effective quarantine and movement restrictions is critical in controlling the spread of EIV. In this study, a novel, inexpensive and user-friendly assay based on an insulated isothermal RT-PCR (iiRT-PCR) method on the POCKIT™, a field-deployable device, was described and validated for point-of-need detection of EIV-H3N8 in clinical samples. The newly established iiRT-PCR assay targeting the EIV HA3 gene was evaluated for its sensitivity using in vitro transcribed (IVT) RNA, as well as ten-fold serial dilutions of RNA extracted from the prototype H3N8 strain A/equine/Miami/1/63. Inclusivity and exclusivity panels were tested for specificity evaluation. Published real-time RT-PCR (rRT-PCR) assays targeting the NP and HA3 genes were used as the reference standards for comparison of RNA extracted from field strains and from nasal swab samples collected from experimentally infected horses, respectively. Limit of detection with a 95% probability (LoD95%) was estimated to be 11copies of IVT RNA. Clinical sensitivity analysis using RNA prepared from serial dilutions of a prototype EIV (Miami 1/63/H3N8) showed that the iiRT-PCR assay was about 100-fold more sensitive than the rRT-PCR assay targeting the NP gene of EIV subtype H3N8. The iiRT-PCR assay identified accurately fifteen EIV H3N8 strains and two canine influenza virus (CIV) H3N8 strains, and did not cross-react with H6N2, H7N7, H1N1 subtypes or any other equine respiratory viral pathogens. Finally, 100% agreement was found between the iiRT-PCR assay and the universal influenza virus type A rRT-PCR assay in detecting the EIV A/equine/Kentucky/7/07 strain in 56 nasal swab samples collected from experimentally inoculated horses. Therefore, the EIV H3N8 subtype specific iiRT-PCR assay along with the portable POCKIT™ Nucleic Acid Analyzer provides a highly reliable, sensitive and specific on-site detection system of both equine and canine influenza viruses.


Subject(s)
Influenza A Virus, H3N8 Subtype/isolation & purification , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods , Veterinary Medicine/instrumentation , Veterinary Medicine/methods , Animals , Horses , Influenza A Virus, H3N8 Subtype/genetics , Orthomyxoviridae Infections/diagnosis , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Point-of-Care Systems , Sensitivity and Specificity
5.
Genome Biol ; 11(2): R11, 2010.
Article in English | MEDLINE | ID: mdl-20128895

ABSTRACT

BACKGROUND: Selectively bred alcohol-preferring (P) and alcohol-nonpreferring (NP) rats differ greatly in alcohol preference, in part due to a highly significant quantitative trait locus (QTL) on chromosome 4. Alcohol consumption scores of reciprocal chromosome 4 congenic strains NP.P and P.NP correlated with the introgressed interval. The goal of this study was to identify candidate genes that may influence alcohol consumption by comparing gene expression in five brain regions of alcohol-naïve inbred alcohol-preferring and P.NP congenic rats: amygdala, nucleus accumbens, hippocampus, caudate putamen, and frontal cortex. RESULTS: Within the QTL region, 104 cis-regulated probe sets were differentially expressed in more than one region, and an additional 53 were differentially expressed in a single region. Fewer trans-regulated probe sets were detected, and most differed in only one region. Analysis of the average expression values across the 5 brain regions yielded 141 differentially expressed cis-regulated probe sets and 206 trans-regulated probe sets. Comparing the present results from inbred alcohol-preferring vs. congenic P.NP rats to earlier results from the reciprocal congenic NP.P vs. inbred alcohol-nonpreferring rats demonstrated that 74 cis-regulated probe sets were differentially expressed in the same direction and with a consistent magnitude of difference in at least one brain region. CONCLUSIONS: Cis-regulated candidate genes for alcohol consumption that lie within the chromosome 4 QTL were identified and confirmed by consistent results in two independent experiments with reciprocal congenic rats. These genes are strong candidates for affecting alcohol preference in the inbred alcohol-preferring and inbred alcohol-nonpreferring rats.


Subject(s)
Alcohol Drinking/genetics , Brain/metabolism , Gene Expression Profiling , Quantitative Trait Loci , Animals , Animals, Congenic , Chromosomes, Mammalian/genetics , Female , Food Preferences , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...