Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35162074

ABSTRACT

The specific interactions of members of tick bacterial microbiota and their effects on pathogen transmission remains relatively unexplored. Here, we introduced a novel Wolbachia infection type into Ixodes scapularis tick cells and examined the antipathogenic effects on the intracellular pathogen Anaplasma phagocytophilum. An increase in A. phagocytophilum replication was observed in Wolbachia-infected tick cells. However, Wolbachia infection densities decreased when cells were serially passaged and ultimately the infection was lost. Host-cell immune response was also examined as an additional factor that could have affected A. phagocytophilum replication in Wolbachia-infected cells. In early passages post-Wolbachia infection, a decreased immune response was observed, but in later passages of cells with low Wolbachia densities, there was no change in the immune response. The results are discussed in relation to the importance of studying the interactions of the tick microbiota, the host cell, and the pathogen and the development of novel tick and tick-borne disease-control approaches.


Subject(s)
Anaplasma phagocytophilum , Anaplasmosis , Ixodes , Wolbachia , Animals , Host-Pathogen Interactions , Ixodes/microbiology
2.
Int J Parasitol Parasites Wildl ; 13: 27-37, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32793414

ABSTRACT

The potential of parasites to affect host abundance has been a topic of heated contention within the scientific community for some time, with many maintaining that issues such as habitat loss are more important in regulating wildlife populations than diseases. This is in part due to the difficulty in detecting and quantifying the consequences of disease, such as parasitic infection, within wild systems. An example of this is found in the Northern bobwhite quail (Colinus virginanus), an iconic game bird that is one of the most extensively studied vertebrates on the planet. Yet, despite countless volumes dedicated to the study and management of this bird, bobwhite continue to disappear from fields, forest margins, and grasslands across the United States in what some have referred to as "our greatest wildlife tragedy". Here, we will discuss the history of disease and wildlife conservation, some of the challenges wildlife disease studies face in the ever-changing world, and how a "weight of evidence" approach has been invaluable to evaluating the impact of parasites on bobwhite in the Rolling Plains of Texas. Through this, we highlight the potential of using "weight of the evidence" to better understand the complex effects of diseases on wildlife and urge a greater consideration of the importance of disease in wildlife conservation.

3.
Parasit Vectors ; 12(1): 555, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31752968

ABSTRACT

BACKGROUND: Oxyspirura petrowi (Spirurida: Thelaziidae), a heteroxenous nematode of birds across the USA, may play a role in the decline of the northern bobwhite (Colinus virginianus) in the Rolling Plains Ecoregion of West Texas. Previous molecular studies suggest that crickets, grasshoppers and cockroaches serve as potential intermediate hosts of O. petrowi, although a complete study on the life-cycle of this nematode has not been conducted thus far. Consequently, this study aims to improve our understanding of the O. petrowi life-cycle by experimentally infecting house crickets (Acheta domesticus) with O. petrowi eggs, feeding infected crickets to bobwhite and assessing the life-cycle of this nematode in both the definitive and intermediate hosts. METHODS: Oxyspirura petrowi eggs were collected from gravid worms recovered from wild bobwhite and fed to house crickets. The development of O. petrowi within crickets was monitored by dissection of crickets at specified intervals. When infective larvae were found inside crickets, parasite-free pen-raised bobwhite were fed four infected crickets each. The maturation of O. petrowi in bobwhite was monitored through fecal floats and bobwhite necropsies at specified intervals. RESULTS: In this study, we were able to infect both crickets (n = 45) and bobwhite (n = 25) with O. petrowi at a rate of 96%. We successfully replicated and monitored the complete O. petrowi life-cycle in vivo, recovering embryonated O. petrowi eggs from the feces of bobwhite 51 days after consumption of infected crickets. All life-cycle stages of O. petrowi were confirmed in both the house cricket and the bobwhite using morphological and molecular techniques. CONCLUSIONS: This study provides a better understanding of the infection mechanism and life-cycle of O. petrowi by tracking the developmental progress within both the intermediate and definitive host. To our knowledge, this study is the first to fully monitor the complete life-cycle of O. petrowi and may allow for better estimates into the potential for future epizootics of O. petrowi in bobwhite. Finally, this study provides a model for experimental infection that may be used in research examining the effects of O. petrowi infection in bobwhite.


Subject(s)
Colinus/parasitology , Gryllidae/parasitology , Life Cycle Stages , Thelazioidea/growth & development , Animals , Feces/parasitology , Texas , Time
4.
Biomol Detect Quantif ; 17: 100092, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31516845

ABSTRACT

Over the last few decades, there has been a decline in Northern bobwhite quail (Colinus virginianus) throughout their native range. While there are various factors that may be influencing this decline, it is suggested that parasites should be taken into consideration as a potential contributor in the Rolling Plains Ecoregion. High prevalence of the eyeworm (Oxyspirura petrowi) and caecal worm (Aulonocephalus pennula) in bobwhite of this region, coupled with a continuous decline, creates a need to assess infection through alternative methods for regional surveillance. Previous studies have developed a qPCR method and mobile research laboratory as an option for nonlethal procedures. However, there is still a need for standardization of these techniques. Therefore, this study builds on previous protocols to develop an application that considers factors that may influence qPCR results. In this study, cloacal swabs are collected from bobwhite in three locations throughout the Rolling Plains and scaled based on amount of feces present on the swab. This data is compared to qPCR standards as a limit of quantification for both eyeworm and caecal worm to define parasitic infection levels. Binary logistic regressions confirm that the probability of detection increases for both eyeworm (Odds Ratio: 2.3738; 95% Confidence Interval: [1.7804, 3.1649]) and caecal worm (Odds Ratio: 2.8516; 95% Confidence Interval: [2.2235, 3.6570]) as swab score increases. Infection levels for eyeworm and caecal worm are based on the generated cycle threshold value averages of qPCR standards. Based on the results of this study, this method can be applied in the mobile research laboratory to quantitatively assess regional parasitic infection in bobwhite throughout the Rolling Plains.

SELECTION OF CITATIONS
SEARCH DETAIL
...