Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Sci Rep ; 12(1): 15955, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153401

ABSTRACT

Proteolytic activation of the renal epithelial sodium channel (ENaC) is increased by aldosterone. The aldosterone-sensitive protease remains unidentified. In humans, elevated circulating aldosterone is associated with increased urinary extracellular vesicle (uEVs) excretion of mannan-binding lectin associated serine protease-2 (MASP-2). We hypothesized that MASP-2 is a physiologically relevant ENaC-activating protease. It was confirmed that MASP2 mRNA is abundantly present in liver but not in human and mouse kidneys. Aldosterone-stimulation of murine cortical colleting duct (mCCD) cells did not induce MASP-2 mRNA. In human kidney collecting duct, MASP-2 protein was detected in AQP2-negative/ATP6VB1-positive intercalated cells suggestive of MASP2 protein uptake. Plasma concentration of full-length MASP-2 and the short splice variant MAp19 were not changed in a cross-over intervention study in healthy humans with low (70 mmol/day) versus high (250 mmol/day) Na+ intake despite changes in aldosterone. The ratio of MAp19/MASP-2 in plasma was significantly increased with a high Na+ diet and the ratio correlated with changes in aldosterone and fractional Na+ excretion. MASP-2 was not detected in crude urine or in uEVs. MASP2 activated an amiloride-sensitive current when co-expressed with ENaC in Xenopus oocytes, but not when added to the bath solution. In monolayers of collecting duct M1 cells, MASP2 expression did not increase amiloride-sensitive current and in HEK293 cells, MASP-2 did not affect γENaC cleavage. MASP-2 is neither expressed nor co-localized and co-regulated with ENaC in the human kidney or in urine after low Na+ intake. MASP-2 does not mediate physiological ENaC cleavage in low salt/high aldosterone settings.


Subject(s)
Kidney Tubules, Collecting , Mannose-Binding Protein-Associated Serine Proteases , Aldosterone/metabolism , Amiloride/pharmacology , Animals , Aquaporin 2/metabolism , Epithelial Sodium Channels/metabolism , HEK293 Cells , Humans , Kidney/metabolism , Kidney Tubules, Collecting/metabolism , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Mice , RNA, Messenger/metabolism , Sodium/metabolism
2.
Scand J Clin Lab Invest ; 82(6): 461-466, 2022 10.
Article in English | MEDLINE | ID: mdl-36129375

ABSTRACT

Haptoglobin-related protein (Hpr) is a plasma protein with high sequence similarity to haptoglobin (Hp). Like Hp, Hpr also binds hemoglobin (Hb) with high affinity, but it does not bind to the Hb-Hp receptor CD163 on macrophages. The Hpr concentration is markedly lower than Hp in plasma and its regulation is not understood. In the present study, we have developed non-crossreactive antibodies to Hpr to analyze the Hpr concentration in 112 plasma samples from anonymized individuals and compared it to Hp. The results show that plasma Hpr correlated with Hp concentrations (rho = 0.46, p = .0001). Hpr accounts for on average 0.35% of the Hp/Hpr pool but up to 29% at low Hp levels. Furthermore, the Hpr concentrations were significantly lower in individuals with the Hp2-2 phenotype compared to those with the Hp2-1 or Hp1-1 phenotypes. Experimental binding analysis did not provide evidence that Hpr associates with Hp and in this way is removed via CD163. In conclusion, the Hpr concentration correlates to Hp concentrations and Hp-phenotypes by yet unknown mechanisms independent of CD163-mediated removal of Hb-Hp complexes.


Subject(s)
Haptoglobins , Hemoglobins , Antigens, Neoplasm , Blood Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Haptoglobins/chemistry , Haptoglobins/genetics , Haptoglobins/metabolism , Hemoglobins/metabolism , Humans , Phenotype
3.
Scand J Clin Lab Invest ; 82(6): 467-473, 2022 10.
Article in English | MEDLINE | ID: mdl-36129425

ABSTRACT

Haptoglobin (Hp) is an abundant plasma protein scavenging hemoglobin (Hb) via CD163 on macrophages. This process consumes Hp, which therefore negatively correlates to hemolysis. However, exact measurements of Hp plasma levels are complicated by different phenotypes (Hp1-1, Hp2-1, and Hp2-2) forming different oligomeric states with differences in immunoreactivity. In addition, humans have an immune-cross-reactive Hp-related protein. In the present study, we developed Hp-specific monoclonal antibodies for an accurate Hp analysis of the different Hp phenotypes in a panel of 112 anonymous samples from hospitalized individuals subjected to routine Hp immunoturbidimetric measurements. The data revealed immunoturbidimetry as a reliable method in most cases but also that the use of non-phenotype-specific calibrators leads to substantial bias in the measurement of the Hp-concentration, non at least in Hp1-1 individuals. Furthermore, analysis of the Hb-dependence of the CD163 interaction with Hp1-1 and Hp2-2 showed that a higher 'cost-effectiveness' in the consumption of dimeric Hp1-1 versus multimeric Hp phenotypes is a likely contribution to the observed differences in the plasma levels of the Hp phenotypes. In conclusion, the determination of Hp phenotype and the use of phenotype-specific calibrators are essential to obtain a precise estimate of the Hp level in healthy and diseased individuals.


Subject(s)
Haptoglobins , Hemoglobins , Antibodies, Monoclonal , Chromosomal Proteins, Non-Histone/genetics , Haptoglobins/genetics , Haptoglobins/metabolism , Hemoglobins/metabolism , Humans , Phenotype
4.
Pathogens ; 11(3)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35335675

ABSTRACT

Devil facial tumour disease (DFTD) is a transmissible cancer that has circulated in the Tasmanian devil population for >25 years. Like other contagious cancers in dogs and devils, the way DFTD escapes the immune response of its host is a central question to understanding this disease. DFTD has a low major histocompatibility complex class I (MHC-I) expression due to epigenetic modifications, preventing host immune recognition of mismatched MHC-I molecules by T cells. However, the total MHC-I loss should result in natural killer (NK) cell activation due to the 'missing self'. Here, we have investigated the expression of the nonclassical MHC-I, Saha-UD as a potential regulatory or suppressive mechanism for DFTD. A monoclonal antibody was generated against the devil Saha-UD that binds recombinant Saha-UD by Western blot, with limited crossreactivity to the classical MHC-I, Saha-UC and nonclassical Saha-UK. Using this antibody, we confirmed the expression of Saha-UD in 13 DFTD tumours by immunohistochemistry (n = 15) and demonstrated that Saha-UD expression is heterogeneous, with 12 tumours showing intratumour heterogeneity. Immunohistochemical staining for the Saha-UD showed distinct patterns of expression when compared with classical MHC-I molecules. The nonclassical Saha-UD expression by DFTD tumours in vivo may be a mechanism for immunosuppression, and further work is ongoing to characterise its ligand on immune cells.

5.
Am J Physiol Renal Physiol ; 321(2): F207-F224, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34151590

ABSTRACT

Functional properties of the paracellular pathway depend critically on the set of claudins (CLDN) expressed at the tight junction. Two syndromes are causally linked to loss-of-function mutations of claudins: hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia (HELIX) syndrome caused by genetic variations in the CLDN10 gene and familial hypomagnesemia with hypercalciuria and nephrocalcinosis caused by genetic variations in the CLDN16 or CLDN19 genes. All three genes are expressed in the kidney, particularly in the thick ascending limb (TAL). However, localization of these claudins in humans and rodents remains to be delineated in detail. We studied the segmental and subcellular expression of CLDN10, CLDN16, and CLDN19 in both paraffin-embedded and frozen kidney sections from the adult human, mouse, and rat using immunohistochemistry and immunofluorescence, respectively. Here, CLDN10 was present in a subset of medullary and cortical TAL cells, localizing to basolateral domains and tight junctions in human and rodent kidneys. Weak expression was detected at the tight junction of proximal tubular cells. CLDN16 was primarily expressed in a subset of TAL cells in the cortex and outer stripe of outer medulla, restricted to basolateral domains and tight junctional structures in both human and rodent kidneys. CLDN19 predominantly colocalized with CLDN16 in tight junctions and basolateral domains of the TAL but was also found in basolateral and junctional domains in more distal sites. CLDN10 expression at tight junctions almost never overlapped with that of CLND16 and CLDN19, consistent with distinct junctional pathways with different permeation profiles in both human and rodent kidneys.NEW & NOTEWORTHY This study used immunohistochemistry and immunofluorescence to investigate the distribution of claudin 10, 16, and 19 in the human, mouse, and rat kidney. The findings showed distinct junctional pathways in both human and rodent kidneys, supporting the existence of different permeation profiles in all species investigated.


Subject(s)
Claudins/metabolism , Kidney Tubules/metabolism , Animals , Epithelium/metabolism , Humans , Immunohistochemistry , Mice , Rats , Tight Junctions/metabolism
6.
Am J Physiol Renal Physiol ; 320(1): F74-F86, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33283646

ABSTRACT

Variations in the claudin-14 (CLDN14) gene have been linked to increased risk of hypercalciuria and kidney stone formation. However, the exact cellular localization of CLDN14 and its regulation remain to be fully delineated. To this end, we generated a novel antibody that allowed the detection of CLDN14 in paraffin-embedded renal sections. This showed CLDN14 to be detectable in the kidney only after induction of hypercalcemia in rodent models. Protein expression in the kidney is localized exclusively to the thick ascending limbs (TALs), mainly restricted to the cortical and upper medullary portion of the kidney. However, not all cells in the TALs expressed the tight junction protein. In fact, CLDN14 was primarily expressed in cells also expressing CLDN16 but devoid of CLDN10. CLDN14 appeared in very superficial apical cell domains and near cell junctions in a belt-like formation along the apical cell periphery. In transgenic mice, Cldn14 promotor-driven LacZ activity did not show complete colocalization with CLDN14 protein nor was it increased by hypercalcemia, suggesting that LacZ activity cannot be used as a marker for CLDN14 localization and regulation in this model. In conclusion, CLDN14 showed a restricted localization pattern in the apical domain of select cells of the TAL.


Subject(s)
Claudins/metabolism , Hypercalcemia/metabolism , Loop of Henle/metabolism , Animals , Claudins/genetics , Disease Models, Animal , Female , HEK293 Cells , Humans , Hypercalcemia/genetics , Hypercalcemia/pathology , Loop of Henle/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Rats, Wistar
7.
J Exp Med ; 216(12): 2689-2700, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31601676

ABSTRACT

Host-microbiota interactions are critical in regulating mammalian health and disease. In addition to bacteria, parasites, and viruses, beneficial communities of fungi (the mycobiome) are important modulators of immune- and tissue-homeostasis. Chitin is a major component of the fungal cell wall, and fibrinogen C containing domain 1 (FIBCD1) is a chitin-binding protein; however, the role of this molecule in influencing host-mycobiome interactions in vivo has never been examined. Here, we identify direct binding of FIBCD1 to intestinal-derived fungi and demonstrate that epithelial-specific expression of FIBCD1 results in significantly reduced fungal colonization and amelioration of fungal-driven intestinal inflammation. Collectively, these results identify FIBCD1 as a previously unrecognized microbial pattern recognition receptor through which intestinal epithelial cells can recognize and control fungal colonization, limit fungal dysbiosis, and dampen intestinal inflammation.


Subject(s)
Fungi/physiology , Microbial Interactions , Mycobiome , Receptors, Cell Surface/metabolism , Animals , Chitin/metabolism , DNA, Ribosomal Spacer , Disease Models, Animal , Enteritis/etiology , Enteritis/metabolism , Enteritis/pathology , Gastrointestinal Microbiome , Gene Expression , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Metagenomics , Mice , Mice, Transgenic , Protein Binding , RNA, Ribosomal, 16S
8.
Pflugers Arch ; 471(11-12): 1383-1396, 2019 12.
Article in English | MEDLINE | ID: mdl-31654198

ABSTRACT

The epithelial Na+ channel (ENaC) is essential for Na+/K+ homeostasis and blood pressure control. Its activity is regulated by proteases in rodents. To gain more information on proteolytic ENaC regulation in humans, we tested the hypotheses that (1) human kidney α- and γ-ENaC subunits are furin-cleaved, glycosylated, and altered by medication that change plasma aldosterone; (2) prostasin-cleaved γ-ENaC is increased in proteinuria, and (3) cleaved ENaC moieties prevail at the membranes and in urinary extracellular vesicles (uEVs). We developed three monoclonal antibodies (mAbs) targeting (1) the neo-epitope generated after furin cleavage in γ-ENaC (mAb-furin); (2) the intact prostasin cleavage-site in γ-ENaC (mAb-intactRKRK), and (3) the α-ENaC subunit (mAb-alpha). Nephrectomy tissue and uEVs were used for immunoblotting and -histochemistry. In human kidney tissue, mAb-furin detected a ≈ 65-70 kDa protein, compatible with furin-cleaved γ-ENaC; mAb-intactRKRK detected full-length (≈ 90-100 kDa) and furin-cleaved (≈ 70-75 kDa) γ-ENaC. mAb-alpha detected a ≈ 50 kDa protein compatible with furin-cleaved α-subunit. Furin-cleaved γ-ENaC was detected predominantly within membrane fractions and deglycosylation shifted full-length γ-ENaC migration ~ 20 kDa. While γ-ENaC uEV levels were below the detection limit, α-ENaC migrated as intact (≈ 75 kDa) and furin-cleaved (≈ 50 kDa) in uEVs. Kidney levels of α- and γ-ENaC in diuretic- (n = 3) and ACE-inhibitor-treated (n = 4) patients were not different from controls (n = 4). Proteinuric patients (n = 6) displayed similar level of furin-cleaved γ-ENaC as controls (n = 4). Cleaved α-ENaC abundance was significantly lower in the kidneys from proteinuria patients. In conclusion, the study demonstrates ENaC cleavage as an event in human kidney that could contribute to physiological regulation and pathophysiological activation of ENaC.


Subject(s)
Epithelial Sodium Channels/metabolism , Epithelium/metabolism , Furin/metabolism , Kidney/metabolism , Protein Subunits/metabolism , Sodium Channels/metabolism , Aldosterone/metabolism , Animals , Diuretics/pharmacology , Epithelium/drug effects , Glycosylation , Humans , Kidney/drug effects , Mice , Proteinuria/metabolism , Serine Endopeptidases/metabolism , Sodium/metabolism
9.
Am J Physiol Renal Physiol ; 317(3): F560-F571, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31241991

ABSTRACT

Human urinary extracellular vesicles (uEVs) contain proteins from all nephron segments. An assumption for years has been that uEVs might provide a noninvasive liquid biopsy that reflect physiological regulation of transporter protein expression in humans. We hypothesized that protein abundance in human kidney tissue and uEVs are directly related and tested this in paired collections of nephrectomy tissue and urine sample from 12 patients. Kidney tissue was fractioned into total kidney protein, crude membrane (plasma membrane and large intracellular vesicles)-enriched, and intracellular vesicle-enriched fractions as well as sections for immunolabeling. uEVs were isolated from spot urine samples. Antibodies were used to quantify six segment-specific proteins [proximal tubule-expressed Na+-phosphate cotransporters (NaPi-2a), thick ascending limb-expressed Tamm-Horsfall protein and renal outer medullary K+ channels, distal convoluted tubule-expressed NaCl cotransporters, intercalated cell-expressed V-type H+-ATPase subunit G3 (ATP6V1G3), and principal cell-expressed aquaporin 2] and three uEV markers (exosomal CD63, microvesicle marker vesicle-associated membrane protein 3, and ß-actin) in each fraction. By Western blot analysis and immunofluorescence labeling, we found significant positive correlations between the abundance of CD63, NaCl cotransporters, aquaporin 2, and ATP6V1G3, respectively, within the different kidney-derived fractions. We detected all nine proteins in uEVs, but their level did not correlate with kidney tissue protein abundance. uEV protein levels showed higher interpatient variability than kidney-derived fractions, indicating that factors, besides kidney protein abundance, contribute to the uEV protein level. Our data suggest that, in a random sample of nephrectomy patients, uEV protein level is not a predictor of kidney protein abundance.


Subject(s)
Epithelial Cells/chemistry , Extracellular Vesicles/chemistry , Kidney Tubules/chemistry , Membrane Transport Proteins/urine , Biomarkers/urine , Humans , Kidney Tubules/surgery , Nephrectomy
10.
Nat Commun ; 9(1): 5204, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30523278

ABSTRACT

The endocytic receptor cubam formed by the 460-kDa protein cubilin and the 45-kDa transmembrane protein amnionless (AMN), is essential for intestinal vitamin B12 (B12) uptake and for protein (e.g. albumin) reabsorption from the kidney filtrate. Loss of function of any of the two components ultimately leads to serious B12 deficiency and urinary protein loss in humans (Imerslund-Gräsbeck's syndrome, IGS). Here, we present the crystal structure of AMN in complex with the amino-terminal region of cubilin, revealing a sophisticated assembly of three cubilin subunits combining into a single intertwined ß-helix domain that docks to a corresponding three-faced ß-helix domain in AMN. This ß-helix-ß-helix association thereby anchors three ligand-binding cubilin subunits to the transmembrane AMN. Electron microscopy of full-length cubam reveals a 700-800 Å long tree-like structure with the potential of dimerization into an even larger complex. Furthermore, effects of known human mutations causing IGS are explained by the structural information.


Subject(s)
Albumins/metabolism , Intestinal Mucosa/metabolism , Kidney/metabolism , Proteins/metabolism , Receptors, Cell Surface/metabolism , Vitamin B 12/metabolism , Amino Acid Sequence , Anemia, Megaloblastic/genetics , Anemia, Megaloblastic/metabolism , Animals , CHO Cells , Cricetulus , Crystallography, X-Ray , Humans , Malabsorption Syndromes/genetics , Malabsorption Syndromes/metabolism , Membrane Proteins , Mutation , Protein Binding , Protein Conformation , Proteins/chemistry , Proteins/genetics , Proteinuria/genetics , Proteinuria/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Sequence Homology, Amino Acid , Vitamin B 12 Deficiency/genetics , Vitamin B 12 Deficiency/metabolism
11.
Alzheimers Dement (N Y) ; 4: 521-534, 2018.
Article in English | MEDLINE | ID: mdl-30386817

ABSTRACT

INTRODUCTION: The abnormal hyperphosphorylation of the microtubule-associated protein tau plays a crucial role in neurodegeneration in Alzheimer's disease (AD) and other tauopathies. METHODS: Highly specific and selective anti-pS396-tau antibodies have been generated using peptide immunization with screening against pathologic hyperphosphorylated tau from rTg4510 mouse and AD brains and selection in in vitro and in vivo tau seeding assays. RESULTS: The antibody C10.2 bound specifically to pS396-tau with an IC50 of 104 pM and detected preferentially hyperphosphorylated tau aggregates from AD brain with an IC50 of 1.2 nM. C10.2 significantly reduced tau seeding of P301L human tau in HEK293 cells, murine cortical neurons, and mice. AD brain extracts depleted with C10.2 were not able to seed tau in vitro and in vivo, demonstrating that C10.2 specifically recognized pathologic seeding-competent tau. DISCUSSION: Targeting pS396-tau with an antibody like C10.2 may provide therapeutic benefit in AD and other tauopathies.

12.
Front Immunol ; 9: 2238, 2018.
Article in English | MEDLINE | ID: mdl-30323815

ABSTRACT

Collectin-11 (CL-11) is a pattern recognition molecule of the lectin pathway of complement with diverse functions spanning from host defense to embryonic development. CL-11 is found in the circulation in heterocomplexes with the homologous collectin-10 (CL-10). Abnormal CL-11 plasma levels are associated with the presence of disseminated intravascular coagulation, urinary schistosomiasis, and congenital disorders. Although there has been a marked development in the characterization of CL-11 there is still a scarcity of clinical tools for its analysis. Thus, we generated monoclonal antibodies and developed a quantitative ELISA to measure CL-11 in the circulation. The antibodies were screened against recombinant CL-11 and validated by ELISA and immunoprecipitation of serum and plasma. The best candidates were pairwise compared to develop a quantitative ELISA. The assay was validated regarding its sensitivity, reproducibility, and dilution linearity, demonstrating a satisfactory variability over a working range of 0.29-18.75 ng/ml. The mean plasma concentration of CL-11 in healthy controls was determined to be 289.4 ng/ml (range 143.2-459.4 ng/ml), highly correlated to the levels of CL/10/11 complexes (r = 0.729). Plasma CL-11 and CL-10/11 co-migrated in size exclusion chromatography as two major complexes of ~400 and >600 kDa. Furthermore, we observed a significant decrease at admission in CL-11 plasma levels in patients admitted to intensive care with systemic inflammatory response syndrome. By using the in-house antibodies and recombinant CL-11, we found that CL-11 can bind to zymosan independently of calcium by a separate site from the carbohydrate-binding region. Finally, we showed that CL-11/MASP-2 complexes trigger C4b deposition on zymosan. In conclusion, we have developed a specific and sensitive ELISA to investigate the ever-expanding roles of CL-11 in health and disease and shown a novel interaction between CL-11 and zymosan.


Subject(s)
Collectins/blood , Collectins/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Systemic Inflammatory Response Syndrome/blood , Analysis of Variance , Animals , Antibodies, Monoclonal/immunology , CHO Cells , Chromatography, Gel , Collectins/immunology , Collectins/metabolism , Complement C4/metabolism , Cricetulus , Freezing , Humans , Lectins/metabolism , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Protein Binding , Statistics, Nonparametric , Zymosan/chemistry
13.
Elife ; 72018 08 14.
Article in English | MEDLINE | ID: mdl-30103855

ABSTRACT

Devil Facial Tumour 2 (DFT2) is a recently discovered contagious cancer circulating in the Tasmanian devil (Sarcophilus harrisii), a species which already harbours a more widespread contagious cancer, Devil Facial Tumour 1 (DFT1). Here we show that in contrast to DFT1, DFT2 cells express major histocompatibility complex (MHC) class I molecules, demonstrating that loss of MHC is not necessary for the emergence of a contagious cancer. However, the most highly expressed MHC class I alleles in DFT2 cells are common among host devils or non-polymorphic, reducing immunogenicity in a population sharing these alleles. In parallel, MHC class I loss is emerging in vivo, thus DFT2 may be mimicking the evolutionary trajectory of DFT1. Based on these results we propose that contagious cancers may exploit partial histocompatibility between the tumour and host, but that loss of allogeneic antigens could facilitate widespread transmission of DFT2.


Subject(s)
Biological Evolution , Facial Neoplasms/genetics , Histocompatibility Antigens Class I/genetics , Alleles , Animals , Facial Neoplasms/physiopathology , Marsupialia/genetics , Marsupialia/physiology
14.
Am J Physiol Renal Physiol ; 315(3): F429-F444, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29993276

ABSTRACT

The vacuolar-type H+-ATPase B1 subunit is heavily expressed in the intercalated cells of the collecting system, where it contributes to H+ transport, but has also been described in other segments of the renal tubule. This study aimed to determine the localization of the B1 subunit of the vacuolar-type H+-ATPase in the early distal nephron, encompassing thick ascending limbs (TAL) and distal convoluted tubules (DCT), in human kidney and determine whether the localization differs between rodents and humans. Antibodies directed against the H+-ATPase B1 subunit were used to determine its localization in paraffin-embedded formalin-fixed mouse, rat, and human kidneys by light microscopy and in sections of Lowicryl-embedded rat kidneys by electron microscopy. Abundant H+-ATPase B1 subunit immunoreactivity was observed in the human kidney. As expected, intercalated cells showed the strongest signal, but significant signal was also observed in apical membrane domains of the distal nephron, including TAL, macula densa, and DCT. In mouse and rat, H+-ATPase B1 subunit expression could also be detected in apical membrane domains of these segments. In rat, electron microscopy revealed that the H+-ATPase B1 subunit was located in the apical membrane. Furthermore, the H+-ATPase B1 subunit colocalized with other H+-ATPase subunits in the TAL and DCT. In conclusion, the B1 subunit is expressed in the early distal nephron. The physiological importance of H+-ATPase expression in these segments remains to be delineated in detail. The phenotype of disease-causing mutations in the B1 subunit may also relate to its presence in the TAL and DCT.


Subject(s)
Kidney Tubules, Distal/enzymology , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Cell Polarity , Humans , Immunohistochemistry , Kidney Tubules, Distal/ultrastructure , Mice, Knockout , Microscopy, Electron, Transmission , Species Specificity , Vacuolar Proton-Translocating ATPases/deficiency , Vacuolar Proton-Translocating ATPases/genetics
15.
Sci Rep ; 8(1): 6491, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29670159

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

16.
Bone ; 110: 312-320, 2018 05.
Article in English | MEDLINE | ID: mdl-29499415

ABSTRACT

Soluble delta-like 1 homolog (DLK1) is a circulating protein that belongs to the Notch/Serrate/delta family, which regulates many differentiation processes including osteogenesis and adipogenesis. We have previously demonstrated an inhibitory effect of DLK1 on bone mass via stimulation of bone resorption and inhibition of bone formation. Further, serum DLK1 levels are elevated and positively correlated to bone turnover markers in estrogen (E)-deficient rodents and women. In this report, we examined whether inhibition of serum DLK1 activity using a neutralizing monoclonal antibody protects from E deficiency-associated bone loss in mice. Thus, we generated mouse monoclonal anti-mouse DLK1 antibodies (MAb DLK1) that enabled us to reduce and also quantitate the levels of bioavailable serum DLK1 in vivo. Ovariectomized (ovx) mice were injected intraperitoneally twice weekly with MAb DLK1 over a period of one month. DEXA-, microCT scanning, and bone histomorphometric analyses were performed. Compared to controls, MAb DLK1 treated ovx mice were protected against ovx-induced bone loss, as revealed by significantly increased total bone mass (BMD) due to increased trabecular bone volume fraction (BV/TV) and inhibition of bone resorption. No significant changes were observed in total fat mass or in the number of bone marrow adipocytes. These results support the potential use of anti-DLK1 antibody therapy as a novel intervention to protect from E deficiency associated bone loss.


Subject(s)
Antibodies/therapeutic use , Bone Resorption/prevention & control , Estrogens/deficiency , Intercellular Signaling Peptides and Proteins/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Animals , Antibodies, Neutralizing/therapeutic use , Bone Density/drug effects , Calcium-Binding Proteins , Cell Line , Female , Flow Cytometry , Humans , Mice , NIH 3T3 Cells , Osteoblasts/drug effects , Osteoclasts/drug effects , Osteogenesis/drug effects , Osteoporosis/prevention & control , Ovariectomy , X-Ray Microtomography
17.
Sci Rep ; 8(1): 3565, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29476080

ABSTRACT

While TLR-activated pathways are key regulators of B cell responses in mammals, their impact on teleost B cells are scarcely addressed. Here, the potential of Atlantic salmon B cells to respond to TLR ligands was shown by demonstrating a constitutive expression of nucleic-acid sensing TLRs in magnetic sorted IgM+ cells. Of the two receptors recognizing CpG in teleosts, tlr9 was the dominating receptor with over ten-fold higher expression than tlr21. Upon CpG-stimulation, IgM secretion increased for head kidney (HK) and splenic IgM+ cells, while blood B cells were marginally affected. The results suggest that CpG directly affects salmon B cells to differentiate into antibody secreting cells (ASCs). IgM secretion was also detected in the non-treated controls, again with the highest levels in the HK derived population, signifying that persisting ASCs are present in this tissue. In all tissues, the IgM+ cells expressed high MHCII levels, suggesting antigen-presenting functions. Upon CpG-treatment the co-stimulatory molecules cd83 and cd40 were upregulated, while cd86 was down-regulated under the same conditions. Finally, ifna1 was upregulated upon CpG-stimulation in all tissues, while a restricted upregulation was evident for ifnb, proposing that salmon IgM+ B cells exhibit a type I IFN-response.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin M/genetics , Interferon-alpha/genetics , Salmo salar/genetics , Animals , Cell Lineage/genetics , Cell Lineage/immunology , CpG Islands/genetics , Gene Expression Regulation/immunology , Immunoglobulin M/immunology , Interferon-alpha/immunology , Salmo salar/immunology , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
18.
Am J Physiol Renal Physiol ; 313(3): F629-F640, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28539338

ABSTRACT

Significant alterations in maternal calcium (Ca2+) and magnesium (Mg2+) balance occur during lactation. Ca2+ is the primary divalent cation mobilized into breast milk by demineralization of the skeleton and alterations in intestinal and renal Ca2+ transport. Mg2+ is also concentrated in breast milk, but the underlying mechanisms are not well understood. To determine the molecular alterations in Ca2+ and Mg2+ transport in the intestine and kidney during lactation, three groups of female mice consisting of either nonpregnant controls, lactating mice, or mice undergoing involution were examined. The fractional excretion of Ca2+, but not Mg2+, rose significantly during lactation. Renal 1-α hydroxylase and 24-OHase mRNA levels increased markedly, as did plasma 1,25 dihydroxyvitamin D levels. This was accompanied by significant increases in intestinal expression of Trpv6 and S100g in lactating mice. However, no alterations in the expression of cation-permeable claudin-2, claudin-12, or claudins-15 were found in the intestine. In the kidney, increased expression of Trpv5 and Calb1 was observed during lactation, while no changes in claudins involved in Ca2+ and Mg2+ transport (claudin-2, claudin-14, claudin-16, or claudin-19) were found. Consistent with the mRNA expression, expression of both calbindin-D28K and transient receptor potential vanilloid 5 (TRPV5) proteins increased. Colonic Trpm6 expression increased during lactation, while renal Trpm6 remained unaltered. In conclusion, proteins involved in transcellular Ca2+ and Mg2+ transport pathways increase during lactation, while expression of paracellular transport proteins remained unchanged. Increased fractional Ca2+ excretion can be explained by vitamin D-dependent intestinal hyperabsorption and bone demineralization, despite enhanced transcellular Ca2+ uptake by the kidney.


Subject(s)
Calcium/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Kidney/metabolism , Lactation/metabolism , Magnesium/metabolism , Mammary Glands, Animal/metabolism , Membrane Transport Proteins/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Adaptation, Physiological , Animals , Biological Transport , Calbindin 1/genetics , Calbindin 1/metabolism , Calcium/urine , Calcium Channels/genetics , Calcium Channels/metabolism , Claudins/genetics , Claudins/metabolism , Female , Intestinal Absorption , Intestinal Mucosa/cytology , Kidney/cytology , Membrane Transport Proteins/genetics , Mice , Renal Reabsorption , S100 Calcium Binding Protein G/genetics , S100 Calcium Binding Protein G/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Time Factors , Vitamin D/analogs & derivatives , Vitamin D/blood , Vitamin D3 24-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/metabolism
19.
Sci Rep ; 7(1): 662, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28386132

ABSTRACT

Outbreaks of Yellow Fever occur regularly in endemic areas of Africa and South America frequently leading to mass vaccination campaigns straining the availability of the attenuated Yellow Fever vaccine, YF-17D. The WHO has recently decided to discontinue regular booster-vaccinations since a single vaccination is deemed to confer life-long immune protection. Here, we have examined humoral (neutralizing antibody) and cellular (CD8 and CD4 T cell) immune responses in primary and booster vaccinees (the latter spanning 8 to 36 years after primary vaccination). After primary vaccination, we observed strong cellular immune responses with T cell activation peaking ≈2 weeks and subsiding to background levels ≈ 4 weeks post-vaccination. The number of antigen-specific CD8+ T cells declined over the following years. In >90% of vaccinees, in vitro expandable T cells could still be detected >10 years post-vaccination. Although most vaccinees responded to a booster vaccination, both the humoral and cellular immune responses observed following booster vaccination were strikingly reduced compared to primary responses. This suggests that pre-existing immunity efficiently controls booster inoculums of YF-17D. In a situation with epidemic outbreaks, one could argue that a more efficient use of a limited supply of the vaccine would be to focus on primary vaccinations.


Subject(s)
Adaptive Immunity , Immunization, Secondary , Vaccination , Yellow Fever Vaccine/immunology , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow fever virus/immunology , Adolescent , Adult , Aged , Animals , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Denmark , Female , Healthy Volunteers , Humans , Lymphocyte Activation , Male , Mice , Middle Aged , Public Health Surveillance , Yellow Fever/metabolism , Young Adult
20.
Sci Rep ; 7: 43827, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28276463

ABSTRACT

Devil facial tumour disease (DFTD) is a transmissible cancer devastating the Tasmanian devil (Sarcophilus harrisii) population. The cancer cell is the 'infectious' agent transmitted as an allograft by biting. Animals usually die within a few months with no evidence of antibody or immune cell responses against the DFTD allograft. This lack of anti-tumour immunity is attributed to an absence of cell surface major histocompatibility complex (MHC)-I molecule expression. While the endangerment of the devil population precludes experimentation on large experimental groups, those examined in our study indicated that immunisation and immunotherapy with DFTD cells expressing surface MHC-I corresponded with effective anti-tumour responses. Tumour engraftment did not occur in one of the five immunised Tasmanian devils, and regression followed therapy of experimentally induced DFTD tumours in three Tasmanian devils. Regression correlated with immune cell infiltration and antibody responses against DFTD cells. These data support the concept that immunisation of devils with DFTD cancer cells can successfully induce humoral responses against DFTD and trigger immune-mediated regression of established tumours. Our findings support the feasibility of a protective DFTD vaccine and ultimately the preservation of the species.


Subject(s)
Facial Neoplasms/immunology , Immunization/methods , Immunotherapy/methods , Marsupialia/immunology , Animals , Antibody Formation/immunology , Facial Neoplasms/therapy , Facial Neoplasms/veterinary , Female , Histocompatibility Antigens Class I/immunology , Immunity, Humoral/immunology , Male , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...