Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 15(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37299271

ABSTRACT

The physical properties and structure of collagen treated with high-pressure technologies have not yet been investigated in detail. The main goal of this work was to determine whether this modern gentle technology significantly changes the properties of collagen. High pressure in the range of 0-400 MPa was used, and the rheological, mechanical, thermal, and structural properties of collagen were measured. The rheological properties measured in the area of linear viscoelasticity do not statistically significantly change due to the influence of pressure or the duration of pressure exposure. In addition, the mechanical properties measured by compression between two plates are not statistically significantly influenced by pressure value or pressure hold time. The thermal properties Ton and ∆H measured by differential calorimetry depend on pressure value and pressure hold time. Results from amino acids and FTIR analyses show that exposure of collagenous gels to high pressure (400 MPa), regardless of applied time (5 and 10 min), caused only minor changes in the primary and secondary structure and preserved collagenous polymeric integrity. SEM analysis did not show changes in collagen fibril ordering orientation over longer distances after applying 400 MPa of pressure for 10 min.

2.
Polymers (Basel) ; 14(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36559702

ABSTRACT

The objective of this study is to provide a straightforward generalized simple and quick method for the prediction of the friction factor for fully developed laminar flow of viscoplastic shear-thinning fluids in non-circular channels of regular cross-sections. The most frequently represented substances processed under these conditions are polymers in the processing and plastics industry. A generalized approximate method was proposed to express the relationship between the friction factor and the Reynolds number for the Herschel-Bulkley rheological model. This method uses the generalized Reynolds number for power-law fluids. Moreover, an additional simplified method for rapid engineering calculations was obtained as well. The suggested method was verified by comparing experimental data for concentric annulus found in the literature and results from simulations for concentric annulus, rectangular, square duct with a central cylindrical core and elliptical cross-sections. The results showed that the suggested methods enable us to estimate the friction factor with high accuracy for the investigated geometries.

3.
Sensors (Basel) ; 22(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35684653

ABSTRACT

This paper deals with the problem of vertical oscillation of rail and road vehicles under symmetrical and asymmetrical loading and symmetrical and asymmetrical kinematic excitation. The term asymmetry is understood as the asymmetric distribution of vehicle mass and elastic and dissipative elements with respect to the axes of geometric symmetry, including asymmetric kinematic excitation. The various models used (spatial, planar, quarter-plane) are discussed and their analytical solutions are outlined. The theory of the spatial model is applied to the chassis of a model railway vehicle. The basic relations for the calculation of the equations of motion of this vehicle are given. In the next section, the experimental solution of a four-axle platform rail car is described and the measurements of vertical displacement and accelerations when crossing wedges (representing unevenness) are given.

4.
Polymers (Basel) ; 14(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35160567

ABSTRACT

This article describes 1D extension tests on bovine collagen samples (8% collagen in water). At such a high collagen concentration, the mechanical properties of semi-solid samples can be approximated by hyperelastic models (two-parametric HGO and Misof models were used), or simply by Hooke's law and the modulus of elasticity E. The experiments confirm a significant increase in the E-modulus of the samples irradiated with high-energy electrons. The modulus E ~ 9 kPa of non-irradiated samples increases monotonically up to E ~ 250 kPa for samples absorbing an e-beam dose of ~3300 Gy. This amplification is attributed to the formation of cross-links by irradiation. However, E-modulus can be increased not only by irradiation but also by exposure to a high strain rate. For example, soft isotropic collagen extruded through a 200 mm long capillary increases the modulus of elasticity from 9 kPa to 30 kPa, and the increase is almost isotropic. This stiffening occurs when the corrugated collagen fibers are straightened and are aligned in the flow direction. It seems that the permanent structural changes caused by extrusion mitigate the effects of the ex post applied irradiation. Irradiation of extruded samples by 3300 Gy increases the modulus of E-elasticity only three times (from 30 kPa to approximately 90 kPa). Extruded and ex post irradiated samples show slight anisotropy (the stiffness in the longitudinal direction is on an average greater than the transverse stiffness).

SELECTION OF CITATIONS
SEARCH DETAIL