Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 113(1): 011101, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-25032915

ABSTRACT

We report strong cosmological constraints on the Brans-Dicke (BD) theory of gravity using cosmic microwave background data from Planck. We consider two types of models. First, the initial condition of the scalar field is fixed to give the same effective gravitational strength Geff today as the one measured on Earth, GN. In this case, the BD parameter ω is constrained to ω>692 at the 99% confidence level, an order of magnitude improvement over previous constraints. In the second type, the initial condition for the scalar is a free parameter leading to a somewhat stronger constraint of ω>890, while Geff is constrained to 0.981

2.
Phys Rev Lett ; 96(1): 011301, 2006 Jan 13.
Article in English | MEDLINE | ID: mdl-16486433

ABSTRACT

A relativistic theory of modified gravity has been recently proposed by Bekenstein. The tensor field in Einstein's theory of gravity is replaced by a scalar, a vector, and a tensor field which interact in such a way to give modified Newtonian dynamics (MOND) in the weak-field nonrelativistic limit. We study the evolution of the Universe in such a theory, identifying its key properties and comparing it with the standard cosmology obtained in Einstein gravity. The evolution of the scalar field is akin to that of tracker quintessence fields. We expand the theory to linear order to find the evolution of perturbations on large scales. The impact on galaxy distributions and the cosmic microwave background is calculated in detail. We show that it may be possible to reproduce observations of the cosmic microwave background and galaxy distributions with Bekenstein's theory of MOND.

3.
Phys Rev Lett ; 95(26): 261303, 2005 Dec 31.
Article in English | MEDLINE | ID: mdl-16486336

ABSTRACT

The cosmic microwave background (CMB) anisotropy constrains the geometry of the Universe because the positions of the acoustic peaks of the angular power spectrum depend strongly on the curvature of three-dimensional space. In this Letter we exploit current observations to determine the geometry in the presence of isocurvature modes. Most previous analyses assumed that the primordial perturbations were adiabatic. A priori one might expect that allowing isocurvature modes would substantially degrade constraints on the curvature. We find, however, that with additional data sets, the geometry remains well constrained. When the most general isocurvature perturbation is allowed, the CMB alone can only poorly constrain the geometry to . Including large-scale structure data, one obtains Ohm(0) = 1.07 +/- 0.03, and 1.06 +/- 0.02 when supplemented by supernova data and the determination of H(0).

4.
Phys Rev Lett ; 93(8): 081301, 2004 Aug 20.
Article in English | MEDLINE | ID: mdl-15447170

ABSTRACT

We investigate the constraints imposed by current data on correlated mixtures of adiabatic and nonadiabatic primordial perturbations. We discover subtle flat directions in parameter space that tolerate large (approximately 60%) fractions of nonadiabatic fluctuations. In particular, larger values of the baryon density and a spectral tilt are allowed. The cancellations in the degenerate directions are explored and the role of priors is elucidated.

5.
Phys Rev Lett ; 84(10): 2076-9, 2000 Mar 06.
Article in English | MEDLINE | ID: mdl-11017213

ABSTRACT

Modern data are showing increasing evidence that the Universe is accelerating. So far, all attempts to account for the acceleration have required some fundamental dimensionless quantities to be extremely small. We show how a class of scalar field models (which may emerge naturally from superstring theory) can account for acceleration which starts in the present epoch with all the potential parameters O(1) in Planck units.

SELECTION OF CITATIONS
SEARCH DETAIL