Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(18): 5201-5210, 2023 09.
Article in English | MEDLINE | ID: mdl-37555658

ABSTRACT

Bacterioplankton underpin biogeochemical cycles and an improved understanding of the patterns and drivers of variability in their distribution is needed to determine their wider functioning and importance. Sharp environmental gradients and dispersal barriers associated with ocean fronts are emerging as key determinants of bacterioplankton biodiversity patterns. We examined how the development of the Celtic Sea Front (CF), a tidal mixing front on the Northwest European Shelf affects bacterioplankton communities. We performed 16S-rRNA metabarcoding on 60 seawater samples collected from three depths (surface, 20 m and seafloor), across two research cruises (May and September 2018), encompassing the intra-annual range of the CF intensity. Communities above the thermocline of stratified frontal waters were clearly differentiated and less diverse than those below the thermocline and communities in the well-mixed waters of the Irish Sea. This effect was much more pronounced in September, when the CF was at its peak intensity. The stratified zone likely represents a stressful environment for bacterioplankton due to a combination of high temperatures and low nutrients, which fewer taxa can tolerate. Much of the observed variation was driven by Synechococcus spp. (cyanobacteria), which were more abundant within the stratified zone and are known to thrive in warm oligotrophic waters. Synechococcus spp. are key contributors to global primary productivity and carbon cycling and, as such, variability driven by the CF is likely to influence regional biogeochemical processes. However, further studies are required to explicitly link shifts in community structure to function and quantify their wider importance to pelagic ecosystems.


Subject(s)
Aquatic Organisms , Ecosystem , Seasons , Biodiversity , Seawater/microbiology , RNA, Ribosomal, 16S/genetics
2.
J Invertebr Pathol ; 192: 107786, 2022 07.
Article in English | MEDLINE | ID: mdl-35700790

ABSTRACT

Diseases of bivalve molluscs caused by paramyxid parasites of the genus Marteilia have been linked to mass mortalities and the collapse of commercially important shellfish populations. Until recently, no Marteilia spp. have been detected in common cockle (Cerastoderma edule) populations in the British Isles. Molecular screening of cockles from ten sites on the Welsh coast indicates that a Marteilia parasite is widespread in Welsh C. edule populations, including major fisheries. Phylogenetic analysis of ribosomal DNA (rDNA) gene sequences from this parasite indicates that it is a closely related but different species to Marteilia cochillia, a parasite linked to mass mortality of C. edule fisheries in Spain, and that both are related to Marteilia octospora, for which we provide new rDNA sequence data. Preliminary light and transmission electron microscope (TEM) observations support this conclusion, indicating that the parasite from Wales is located primarily within areas of inflammation in the gills and the connective tissue of the digestive gland, whereas M. cochillia is found mainly within the epithelium of the digestive gland. The impact of infection by the new species, here described as Marteilia cocosarum n. sp., upon Welsh fisheries is currently unknown.


Subject(s)
Bivalvia , Cardiidae , Parasites , Animals , Bivalvia/parasitology , Cardiidae/parasitology , DNA, Ribosomal , Fisheries , Phylogeny , Wales
3.
J Fish Biol ; 96(6): 1434-1443, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32154919

ABSTRACT

Two geographically nonoverlapping species are currently described within the sparid genus Spondyliosoma: Spondyliosoma cantharus (Black Seabream) occurring across Mediterranean and eastern Atlantic waters from NW Europe to Angola and S. emarginatum (Steentjie) considered endemic to southern Africa. To address prominent knowledge gaps this study investigated range-wide phylogeographic structure across both species. Mitochondrial DNA sequences revealed deep phylogeographic structuring with four regionally partitioned reciprocally monophyletic clades, a Mediterranean clade and three more closely related Atlantic clades [NE Atlantic, Angola and South Africa (corresponding to S. emarginatum)]. Divergence and distribution of the lineages reflects survival in, and expansion from, disjunct glacial refuge areas. Cytonuclear differentiation of S. emarginatum supports its validity as a distinct species endemic to South African waters. However, the results also indicate that S. cantharus may be a cryptic species complex wherein the various regional lineages represent established/incipient species. A robust multilocus genetic assessment combining morphological data and detailing interactions among lineages is needed to determine the full diversity within Spondyliosoma and the most adequate biological and taxonomic status.


Subject(s)
Genetic Variation , Perciformes/classification , Africa , Animals , Atlantic Ocean , DNA, Mitochondrial/genetics , Europe , Haplotypes , Mediterranean Sea , Perciformes/genetics , Phylogeny , Phylogeography , Sequence Analysis, DNA , Species Specificity
4.
J Fish Biol ; 96(3): 795-805, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32031244

ABSTRACT

Two sister species of horse mackerel (Trachurus trachurus and T. capensis) are described that are intensively harvested in East Atlantic waters. To address long-standing uncertainties as to their respective geographical ranges, overlap and intraspecific population structure this study combined genetic (mitochondrial DNA and microsatellite) analysis and targeted sampling of the hitherto understudied West African coast. mtDNA revealed two reciprocally monophyletic clades corresponding to each species with interspecies nuclear differentiation supported by FST values. The T. trachurus clade was found across the north-east Atlantic down to Ghana but was absent from Angolan and South African samples. The T. capensis clade was found only in South Africa, Angola and a single Ghanaian individual. This pattern suggests that both species may overlap in the waters around Ghana. The potential for cryptic hybridization and/or indiscriminate harvesting of both species in the region is discussed. For T. capensis mtDNA supports high gene flow across the Benguela upwelling system, which fits with the species' ecology. The data add to evidence of a lack of significant genetic structure throughout the range of T. trachurus though the assumption of demographic panmixia is cautioned against. For both species, resolution of stock recruitment heterogeneity relevant to fishery management, as well as potential hybridization, will require more powerful genomic analyses.


Subject(s)
Demography , Perciformes/classification , Perciformes/genetics , Africa, Southern , Animals , DNA, Mitochondrial/genetics , Gene Flow , Genetics, Population , Microsatellite Repeats/genetics
5.
Mitochondrial DNA B Resour ; 4(2): 2738-2739, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-33365707

ABSTRACT

The analysis of mitochondrial DNA (mtDNA) base composition, codon usage, and genome arrangement patterns can provide insight into metabolic pathways and evolutionary history. Here, we report on the complete mitochondrial genome (mitogenome) of Arctic tern (Sterna paradisaea) a species notable for undertaking the longest migrations of any species as well as breeding in sub-polar habitats and capable of enduring extreme altitude. The complete mitogenome was 16,708 bp long and was typical of other avian mitogenomes in size and content. The phylogenetic position of the Arctic tern within Charadriiformes based on the coding region on the mtDNA corresponded closely to that based on nuclear loci. The sequence will provide a useful resource for investigations of metabolic adaptations of this remarkable species.

6.
Genome ; 61(10): 767-770, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30184439

ABSTRACT

Height is an important characteristic in the equine industry although little is known about its genetic control in native British breeds of ponies. This study aimed to map QTL data with the withers height in four pony breeds native to the British Isles, including two different sections within Welsh Cobs. In this study, a genome-wide analysis approach using the Illumina EquineSNP50 Infinium BeadChip was applied to 105 ponies and cobs. Analysis identified 222 highly significant height-associated SNPs (P ≤ 10-5), among which three SNPs on ECA9 have also been previously reported elsewhere. The highest number of significant SNPs associated to height in the native British horses were located on ECA1, ECA8, and ECA16.


Subject(s)
Genotyping Techniques/methods , Horses/anatomy & histology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Biometry , Breeding , Chromosome Mapping , Chromosomes, Mammalian/genetics , High-Throughput Nucleotide Sequencing , Horses/genetics , Whole Genome Sequencing/methods
7.
Aging (Albany NY) ; 8(8): 1781-9, 2016 08.
Article in English | MEDLINE | ID: mdl-27542284

ABSTRACT

Despite a number of biochemical and lifestyle differences which should increase risk of oxidative damage to their mitochondrial DNA (mtDNA) and thus reduce expected lifespan, avian species often display longer lifespans than mammals of similar body mass. Recent work in mammalian ageing has demonstrated that functional mitochondrial copy number declines with age. We noted that several bird species display duplication of the control region (CR) of the mtDNA to form a pseudo-control region (YCR), apparently an avian-specific phenomenon. To investigate whether the presence of this duplication may play a similar role in longevity to mitochondrial copy number in mammals, we correlated body mass and longevity in 92 avian families and demonstrate a significant association. Furthermore, outlier analysis demonstrated a significant (p=0.01) difference associated with presence of the YCR duplication in longer-lived avian species. Further research is required to determine if the YCR does indeed alter mitochondrial function or resilience to oxidative damage, but these findings provide an intriguing hint of how mitochondrial sequences may be related to an extended lifespan.


Subject(s)
Aging/metabolism , DNA, Mitochondrial/metabolism , Longevity/genetics , Mitochondria/metabolism , Aging/genetics , Animals , Birds , DNA, Mitochondrial/genetics , Mitochondria/genetics , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL