Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nature ; 616(7957): 495-503, 2023 04.
Article in English | MEDLINE | ID: mdl-37046085

ABSTRACT

Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.


Subject(s)
Animal Fins , Biological Evolution , Genome , Genomics , Skates, Fish , Animals , Animal Fins/anatomy & histology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Skates, Fish/anatomy & histology , Skates, Fish/genetics , Zebrafish/genetics , Genes, Reporter/genetics
2.
Gigascience ; 122023 03 20.
Article in English | MEDLINE | ID: mdl-36994871

ABSTRACT

BACKGROUND: One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long-read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. FINDINGS: We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on chromosomes 11, 16, 25, and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and 9 previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mitochondrial DNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified 2 differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphologic data, comprising geometric morphometric assessment of cranial morphology, place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue shows she had a larger cranial capacity than a similar-sized domestic dog. CONCLUSIONS: These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphologic characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.


Subject(s)
Canidae , Genome, Mitochondrial , Wolves , Dogs , Animals , Female , Epigenome , Phylogeny , Australia , Canidae/genetics , Wolves/genetics , Chromosomes
3.
bioRxiv ; 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36747621

ABSTRACT

Background: One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. Findings: We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on Chromosomes 11, 16, 25 and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and nine previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mtDNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified two differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphological data, comprising geometric morphometric assessment of cranial morphology place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue show she had a larger cranial capacity than a similar-sized domestic dog. Conclusions: These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphological characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.

4.
Sci Adv ; 8(48): eabn2258, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36459547

ABSTRACT

DNA methylation [5-methylcytosine (5mC)] is a repressive gene-regulatory mark required for vertebrate embryogenesis. Genomic 5mC is tightly regulated through the action of DNA methyltransferases, which deposit 5mC, and ten-eleven translocation (TET) enzymes, which participate in its active removal through the formation of 5-hydroxymethylcytosine (5hmC). TET enzymes are essential for mammalian gastrulation and activation of vertebrate developmental enhancers; however, to date, a clear picture of 5hmC function, abundance, and genomic distribution in nonvertebrate lineages is lacking. By using base-resolution 5mC and 5hmC quantification during sea urchin and lancelet embryogenesis, we shed light on the roles of nonvertebrate 5hmC and TET enzymes. We find that these invertebrate deuterostomes use TET enzymes for targeted demethylation of regulatory regions associated with developmental genes and show that the complement of identified 5hmC-regulated genes is conserved to vertebrates. This work demonstrates that active 5mC removal from regulatory regions is a common feature of deuterostome embryogenesis suggestive of an unexpected deep conservation of a major gene-regulatory module.


Subject(s)
DNA Demethylation , Vertebrates , Animals , Vertebrates/genetics , Gene Regulatory Networks , Embryonic Development/genetics , DNA Methylation , Mammals
5.
Immunity ; 55(12): 2386-2404.e8, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36446385

ABSTRACT

The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co-existing autoimmunity. To investigate whether these mutations are the cause or consequence of CD8+ T cell clonal expansions and autoimmunity, we analyzed patients and mice with germline STAT3 GOF mutations. STAT3 GOF mutations drove the accumulation of effector CD8+ T cell clones highly expressing NKG2D, the receptor for stress-induced MHC-class-I-related molecules. This subset also expressed genes for granzymes, perforin, interferon-γ, and Ccl5/Rantes and required NKG2D and the IL-15/IL-2 receptor IL2RB for maximal accumulation. Leukocyte-restricted STAT3 GOF was sufficient and CD8+ T cells were essential for lethal pathology in mice. These results demonstrate that STAT3 GOF mutations cause effector CD8+ T cell oligoclonal accumulation and that these rogue cells contribute to autoimmune pathology, supporting the hypothesis that somatic mutations in leukemia/lymphoma driver genes contribute to autoimmune disease.


Subject(s)
Autoimmune Diseases , Leukemia, Large Granular Lymphocytic , Animals , Mice , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , CD8-Positive T-Lymphocytes , Gain of Function Mutation , Leukemia, Large Granular Lymphocytic/genetics , Leukemia, Large Granular Lymphocytic/pathology , Mutation , NK Cell Lectin-Like Receptor Subfamily K/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
6.
Sci Adv ; 8(16): eabm5944, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35452284

ABSTRACT

Dogs are uniquely associated with human dispersal and bring transformational insight into the domestication process. Dingoes represent an intriguing case within canine evolution being geographically isolated for thousands of years. Here, we present a high-quality de novo assembly of a pure dingo (CanFam_DDS). We identified large chromosomal differences relative to the current dog reference (CanFam3.1) and confirmed no expanded pancreatic amylase gene as found in breed dogs. Phylogenetic analyses using variant pairwise matrices show that the dingo is distinct from five breed dogs with 100% bootstrap support when using Greenland wolf as the outgroup. Functionally, we observe differences in methylation patterns between the dingo and German shepherd dog genomes and differences in serum biochemistry and microbiome makeup. Our results suggest that distinct demographic and environmental conditions have shaped the dingo genome. In contrast, artificial human selection has likely shaped the genomes of domestic breed dogs after divergence from the dingo.


Subject(s)
Canidae , Wolves , Animals , Australia , Breeding , Canidae/genetics , Dogs , Phylogeny , Wolves/genetics
7.
Cell Rep ; 36(12): 109722, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34551299

ABSTRACT

DNA replication timing and three-dimensional (3D) genome organization are associated with distinct epigenome patterns across large domains. However, whether alterations in the epigenome, in particular cancer-related DNA hypomethylation, affects higher-order levels of genome architecture is still unclear. Here, using Repli-Seq, single-cell Repli-Seq, and Hi-C, we show that genome-wide methylation loss is associated with both concordant loss of replication timing precision and deregulation of 3D genome organization. Notably, we find distinct disruption in 3D genome compartmentalization, striking gains in cell-to-cell replication timing heterogeneity and loss of allelic replication timing in cancer hypomethylation models, potentially through the gene deregulation of DNA replication and genome organization pathways. Finally, we identify ectopic H3K4me3-H3K9me3 domains from across large hypomethylated domains, where late replication is maintained, which we purport serves to protect against catastrophic genome reorganization and aberrant gene transcription. Our results highlight a potential role for the methylome in the maintenance of 3D genome regulation.


Subject(s)
DNA Methylation , DNA Replication Timing/physiology , Genome, Human , Cell Line, Tumor , Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Databases, Genetic , Gene Expression , Histones/metabolism , Humans , Sequence Analysis, DNA/methods
8.
Methods Mol Biol ; 2272: 163-178, 2021.
Article in English | MEDLINE | ID: mdl-34009613

ABSTRACT

5-Methylcytosine (5mC) is one of the most abundant and well-studied chemical DNA modifications of vertebrate genomes. 5mC plays an essential role in genome regulation including: silencing of retroelements, X chromosome inactivation, and heterochromatin stability. Furthermore, 5mC shapes the activity of cis-regulatory elements crucial for cell fate determination. TET enzymes can oxidize 5mC to form 5-hydroxymethylcytosine (5hmC), thereby adding an additional layer of complexity to the DNA methylation landscape dynamics. The advent of techniques enabling genome-wide 5hmC profiling provided critical insights into its genomic distribution, scope, and function. These methods include immunoprecipitation, chemical labeling and capture-based approaches, as well as single-nucleotide 5hmC profiling techniques such as TET-assisted bisulfite sequencing (TAB-seq) and APOBEC-coupled epigenetic sequencing (ACE-seq). Here we provide a detailed protocol for computational analysis required for the genomic alignment of TAB-seq and ACE-seq data, 5hmC calling, and statistical analysis.


Subject(s)
5-Methylcytosine/analogs & derivatives , DNA Methylation , DNA/analysis , DNA/chemistry , Genome, Human , Mixed Function Oxygenases/metabolism , Proto-Oncogene Proteins/metabolism , Sulfites/chemistry , 5-Methylcytosine/chemistry , Computational Biology/methods , DNA/genetics , Epigenesis, Genetic , High-Throughput Nucleotide Sequencing , Humans , Oxidation-Reduction
9.
BMC Genomics ; 22(1): 188, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33726677

ABSTRACT

BACKGROUND: Basenjis are considered an ancient dog breed of central African origins that still live and hunt with tribesmen in the African Congo. Nicknamed the barkless dog, Basenjis possess unique phylogeny, geographical origins and traits, making their genome structure of great interest. The increasing number of available canid reference genomes allows us to examine the impact the choice of reference genome makes with regard to reference genome quality and breed relatedness. RESULTS: Here, we report two high quality de novo Basenji genome assemblies: a female, China (CanFam_Bas), and a male, Wags. We conduct pairwise comparisons and report structural variations between assembled genomes of three dog breeds: Basenji (CanFam_Bas), Boxer (CanFam3.1) and German Shepherd Dog (GSD) (CanFam_GSD). CanFam_Bas is superior to CanFam3.1 in terms of genome contiguity and comparable overall to the high quality CanFam_GSD assembly. By aligning short read data from 58 representative dog breeds to three reference genomes, we demonstrate how the choice of reference genome significantly impacts both read mapping and variant detection. CONCLUSIONS: The growing number of high-quality canid reference genomes means the choice of reference genome is an increasingly critical decision in subsequent canid variant analyses. The basal position of the Basenji makes it suitable for variant analysis for targeted applications of specific dog breeds. However, we believe more comprehensive analyses across the entire family of canids is more suited to a pangenome approach. Collectively this work highlights the importance the choice of reference genome makes in all variation studies.


Subject(s)
Wolves , Animals , China , Chromosomes , Dogs , Female , Genome , Genomics , Male , Wolves/genetics
10.
Gigascience ; 9(4)2020 04 01.
Article in English | MEDLINE | ID: mdl-32236524

ABSTRACT

BACKGROUND: The German Shepherd Dog (GSD) is one of the most common breeds on earth and has been bred for its utility and intelligence. It is often first choice for police and military work, as well as protection, disability assistance, and search-and-rescue. Yet, GSDs are well known to be susceptible to a range of genetic diseases that can interfere with their training. Such diseases are of particular concern when they occur later in life, and fully trained animals are not able to continue their duties. FINDINGS: Here, we provide the draft genome sequence of a healthy German Shepherd female as a reference for future disease and evolutionary studies. We generated this improved canid reference genome (CanFam_GSD) utilizing a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. The GSD assembly is ∼80 times as contiguous as the current canid reference genome (20.9 vs 0.267 Mb contig N50), containing far fewer gaps (306 vs 23,876) and fewer scaffolds (429 vs 3,310) than the current canid reference genome CanFamv3.1. Two chromosomes (4 and 35) are assembled into single scaffolds with no gaps. BUSCO analyses of the genome assembly results show that 93.0% of the conserved single-copy genes are complete in the GSD assembly compared with 92.2% for CanFam v3.1. Homology-based gene annotation increases this value to ∼99%. Detailed examination of the evolutionarily important pancreatic amylase region reveals that there are most likely 7 copies of the gene, indicative of a duplication of 4 ancestral copies and the disruption of 1 copy. CONCLUSIONS: GSD genome assembly and annotation were produced with major improvement in completeness, continuity, and quality over the existing canid reference. This resource will enable further research related to canine diseases, the evolutionary relationships of canids, and other aspects of canid biology.


Subject(s)
Chromosomes/genetics , Genome/genetics , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods , Animals , Dogs , Genomics , Molecular Sequence Annotation
11.
Essays Biochem ; 63(6): 797-811, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31845735

ABSTRACT

As one of the most abundant and well-studied epigenetic modifications, DNA methylation plays an essential role in normal development and cellular biology. Global alterations to the DNA methylation landscape contribute to alterations in the transcriptome and deregulation of cellular pathways. Indeed, improved methods to study DNA methylation patterning and dynamics at base pair resolution and across individual DNA molecules on a genome-wide scale has highlighted the scope of change to the DNA methylation landscape in disease states, particularly during tumorigenesis. More recently has been the development of DNA hydroxymethylation profiling techniques, which allows differentiation between 5mC and 5hmC profiles and provides further insights into DNA methylation dynamics and remodeling in tumorigenesis. In this review, we describe the distribution of DNA methylation and DNA hydroxymethylation in different genomic contexts, first in normal cells, and how this is altered in cancer. Finally, we discuss DNA methylation profiling technologies and the most recent advances in single-cell methods, bisulfite-free approaches and ultra-long read sequencing techniques.


Subject(s)
DNA Methylation , DNA/metabolism , Neoplasms/genetics , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/chemistry , Animals , DNA/chemistry , Epigenomics/methods , Humans
12.
Nat Commun ; 10(1): 3054, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31296860

ABSTRACT

Two waves of DNA methylation reprogramming occur during mammalian embryogenesis; during preimplantation development and during primordial germ cell (PGC) formation. However, it is currently unclear how evolutionarily conserved these processes are. Here we characterise the DNA methylomes of zebrafish PGCs at four developmental stages and identify retention of paternal epigenetic memory, in stark contrast to the findings in mammals. Gene expression profiling of zebrafish PGCs at the same developmental stages revealed that the embryonic germline is defined by a small number of markers that display strong developmental stage-specificity and that are independent of DNA methylation-mediated regulation. We identified promoters that are specifically targeted by DNA methylation in somatic and germline tissues during vertebrate embryogenesis and that are frequently misregulated in human cancers. Together, these detailed methylome and transcriptome maps of the zebrafish germline provide insight into vertebrate DNA methylation reprogramming and enhance our understanding of the relationships between germline fate acquisition and oncogenesis.


Subject(s)
DNA Methylation , Gene Expression Regulation, Developmental/genetics , Germ Cells/growth & development , Paternal Inheritance , Zebrafish/genetics , Animals , Animals, Genetically Modified , Embryo, Nonmammalian , Embryonic Development/genetics , Epigenesis, Genetic/physiology , Gene Expression Profiling , Promoter Regions, Genetic/genetics , Whole Genome Sequencing
13.
Cancer Cell ; 35(2): 297-314.e8, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30753827

ABSTRACT

Promoter CpG islands are typically unmethylated in normal cells, but in cancer a proportion are subject to hypermethylation. Using methylome sequencing we identified CpG islands that display partial methylation encroachment across the 5' or 3' CpG island borders. CpG island methylation encroachment is widespread in prostate and breast cancer and commonly associates with gene suppression. We show that the pattern of H3K4me1 at CpG island borders in normal cells predicts the different modes of cancer CpG island hypermethylation. Notably, genetic manipulation of Kmt2d results in concordant alterations in H3K4me1 levels and CpG island border DNA methylation encroachment. Our findings suggest a role for H3K4me1 in the demarcation of CpG island methylation borders in normal cells, which become eroded in cancer.


Subject(s)
CpG Islands , DNA Methylation , DNA, Neoplasm/metabolism , Histones/metabolism , Neoplasms/metabolism , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Animals , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Humans , Male , Methylation , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Promoter Regions, Genetic
14.
Epigenetics Chromatin ; 12(1): 12, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30755246

ABSTRACT

BACKGROUND: ATP-dependent chromatin remodelling complexes are responsible for establishing and maintaining the positions of nucleosomes. Chromatin remodellers are targeted to chromatin by transcription factors and non-coding RNA to remodel the chromatin into functional states. However, the influence of chromatin remodelling on shaping the functional epigenome is not well understood. Moreover, chromatin remodellers have not been extensively explored as a collective group across two-dimensional and three-dimensional epigenomic layers. RESULTS: Here, we have integrated the genome-wide binding profiles of eight chromatin remodellers together with DNA methylation, nucleosome positioning, histone modification and Hi-C chromosomal contacts to reveal that chromatin remodellers can be stratified into two functional groups. Group 1 (BRG1, SNF2H, CHD3 and CHD4) has a clear preference for binding at 'actively marked' chromatin and Group 2 (BRM, INO80, SNF2L and CHD1) for 'repressively marked' chromatin. We find that histone modifications and chromatin architectural features, but not DNA methylation, stratify the remodellers into these functional groups. CONCLUSIONS: Our findings suggest that chromatin remodelling events are synchronous and that chromatin remodellers themselves should be considered simultaneously and not as individual entities in isolation or necessarily by structural similarity, as they are traditionally classified. Their coordinated function should be considered by preference for chromatin features in order to gain a more accurate and comprehensive picture of chromatin regulation.


Subject(s)
Chromatin Assembly and Disassembly , Epigenesis, Genetic , Histone Code , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Genome, Human , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism
15.
Nat Rev Mol Cell Biol ; 19(12): 774-790, 2018 12.
Article in English | MEDLINE | ID: mdl-30425324

ABSTRACT

The idea that epigenetic determinants such as DNA methylation, histone modifications or RNA can be passed to the next generation through meiotic products (gametes) is long standing. Such meiotic epigenetic inheritance (MEI) is fairly common in yeast, plants and nematodes, but its extent in mammals has been much debated. Advances in genomics techniques are now driving the profiling of germline and zygotic epigenomes, thereby improving our understanding of MEI in diverse species. Whereas the role of DNA methylation in MEI remains unclear, insights from genome-wide studies suggest that a previously underappreciated fraction of mammalian genomes bypass epigenetic reprogramming during development. Notably, intergenerational inheritance of histone modifications, tRNA fragments and microRNAs can affect gene regulation in the offspring. It is important to note that MEI in mammals rarely constitutes transgenerational epigenetic inheritance (TEI), which spans multiple generations. In this Review, we discuss the examples of MEI in mammals, including mammalian epigenome reprogramming, and the molecular mechanisms of MEI in vertebrates in general. We also discuss the implications of the inheritance of histone modifications and small RNA for embryogenesis in metazoans, with a particular focus on insights gained from genome-wide studies.


Subject(s)
Epigenesis, Genetic/genetics , Epigenesis, Genetic/physiology , Mammals/genetics , Animals , DNA Methylation/genetics , Embryonic Development/genetics , Epigenomics/methods , Gene Expression Regulation, Developmental/genetics , Genome , Histones/genetics , Humans , RNA, Small Untranslated/genetics
16.
Nature ; 564(7734): 64-70, 2018 12.
Article in English | MEDLINE | ID: mdl-30464347

ABSTRACT

Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.


Subject(s)
Gene Expression Regulation , Genomics , Lancelets/genetics , Vertebrates/genetics , Animals , Body Patterning/genetics , DNA Methylation , Humans , Lancelets/embryology , Molecular Sequence Annotation , Promoter Regions, Genetic , Transcriptome/genetics
17.
Epigenetics Chromatin ; 10: 16, 2017.
Article in English | MEDLINE | ID: mdl-28428825

ABSTRACT

BACKGROUND: The discovery that 5-methylcytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation (TET) proteins has prompted wide interest in the potential role of 5hmC in reshaping the mammalian DNA methylation landscape. The gold-standard bisulphite conversion technologies to study DNA methylation do not distinguish between 5mC and 5hmC. However, new approaches to mapping 5hmC genome-wide have advanced rapidly, although it is unclear how the different methods compare in accurately calling 5hmC. In this study, we provide a comparative analysis on brain DNA using three 5hmC genome-wide approaches, namely whole-genome bisulphite/oxidative bisulphite sequencing (WG Bis/OxBis-seq), Infinium HumanMethylation450 BeadChip arrays coupled with oxidative bisulphite (HM450K Bis/OxBis) and antibody-based immunoprecipitation and sequencing of hydroxymethylated DNA (hMeDIP-seq). We also perform loci-specific TET-assisted bisulphite sequencing (TAB-seq) for validation of candidate regions. RESULTS: We show that whole-genome single-base resolution approaches are advantaged in providing precise 5hmC values but require high sequencing depth to accurately measure 5hmC, as this modification is commonly in low abundance in mammalian cells. HM450K arrays coupled with oxidative bisulphite provide a cost-effective representation of 5hmC distribution, at CpG sites with 5hmC levels >~10%. However, 5hmC analysis is restricted to the genomic location of the probes, which is an important consideration as 5hmC modification is commonly enriched at enhancer elements. Finally, we show that the widely used hMeDIP-seq method provides an efficient genome-wide profile of 5hmC and shows high correlation with WG Bis/OxBis-seq 5hmC distribution in brain DNA. However, in cell line DNA with low levels of 5hmC, hMeDIP-seq-enriched regions are not detected by WG Bis/OxBis or HM450K, either suggesting misinterpretation of 5hmC calls by hMeDIP or lack of sensitivity of the latter methods. CONCLUSIONS: We highlight both the advantages and caveats of three commonly used genome-wide 5hmC profiling technologies and show that interpretation of 5hmC data can be significantly influenced by the sensitivity of methods used, especially as the levels of 5hmC are low and vary in different cell types and different genomic locations.


Subject(s)
5-Methylcytosine/analogs & derivatives , DNA/analysis , Gene Expression Profiling/methods , Genome, Human , 5-Methylcytosine/metabolism , Brain/metabolism , Cell Line, Tumor , CpG Islands , DNA/metabolism , DNA Methylation , Humans , Immunoprecipitation , Mixed Function Oxygenases/metabolism , Oligonucleotide Array Sequence Analysis , Oxidation-Reduction , Proto-Oncogene Proteins/metabolism , Sequence Analysis, DNA , Sulfites/chemistry , Whole Genome Sequencing
18.
Nucleus ; 6(4): 249-53, 2015.
Article in English | MEDLINE | ID: mdl-26211696

ABSTRACT

Replication of chromosomes is central to heredity. To become available for replication machinery, DNA invariably needs to dissociate from chromatin proteins. Yet, chromatin landscape must be promptly re-established during or soon after replication. Although this process underlies the epigenetic inheritance, little is known about its molecular mechanisms. This mini-review is focused on Drosophila melanogaster SUppressor of UnderReplication (SUUR) protein, which is involved both in replication and chromatin maintenance in polytene tissues. Existing data suggest that it is involved in the regulation of chromatin renewal during replication. According to this model, SUUR protein moves along the chromosomes together with the replication complex. When the replication fork enters the repressed, H3K27me3- or H3K9me3-enriched, chromatin, SUUR-containing complex slows down the replisome until these histone modifications are properly placed on the newly-synthesized DNA strands. Suggested model provides an insight into the mechanism of epigenetic information inheritance. This hypothesis could be tested by further analysis of the interplay between local enrichment of repressive histone modifications and the replication fork progression rate.


Subject(s)
Chromatin/genetics , DNA Replication , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Epigenetic Repression , Animals , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Histones/genetics , Histones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...