Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865197

ABSTRACT

Growing antibiotic resistance is rapidly threatening the efficacy of treatments for Gram-negative infections. Bicycle molecules, constrained bicyclic peptides from diverse libraries generated by bacteriophage display that bind with high affinity to a chosen target are a potential new class of antibiotics. The generally impermeable bacterial outer membrane currently limits the access of peptides to bacteria. The conjugation of membrane active peptides offers an avenue for outer membrane penetration. Here, we investigate which physicochemical properties of a specific membrane active peptide (MAP), derived from ixosin-B, could be tweaked to enhance the penetration of conjugates by generating multiple MAP-Bicycle conjugate variants. We demonstrate that charge and hydrophobicity are important factors, which enhance penetration and, therefore, antimicrobial potency. Interestingly, we show that induction of secondary structure, but not a change in amphipathicity, is vital for effective penetration of the Gram-negative outer membrane. These results offer insights into the ways vectors could be designed to deliver Bicycle molecules (and other cargos) through biological membranes.

2.
J Med Chem ; 67(3): 2220-2235, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38284169

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pro-inflammatory cytokine involved in the development of asthma and other atopic diseases. We used Bicycle Therapeutics' proprietary phage display platform to identify bicyclic peptides (Bicycles) with high affinity for TSLP, a target that is difficult to drug with conventional small molecules due to the extended protein-protein interactions it forms with both receptors. The hit series was shown to bind to TSLP in a hotspot, that is also used by IL-7Rα. Guided by the first X-ray crystal structure of a small peptide binding to TSLP and the identification of key metabolites, we were able to improve the proteolytic stability of this series in lung S9 fractions without sacrificing binding affinity. This resulted in the potent Bicycle 46 with nanomolar affinity to TSLP (KD = 13 nM), low plasma clearance of 6.4 mL/min/kg, and an effective half-life of 46 min after intravenous dosing to rats.


Subject(s)
Asthma , Thymic Stromal Lymphopoietin , Animals , Rats , Asthma/drug therapy , Bicycling , Cytokines/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism
3.
J Med Chem ; 66(14): 9881-9893, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37433017

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a metalloprotease that cleaves angiotensin II, a peptide substrate involved in the regulation of hypertension. Here, we identified a series of constrained bicyclic peptides, Bicycle, inhibitors of human ACE2 by panning highly diverse bacteriophage display libraries. These were used to generate X-ray crystal structures which were used to inform the design of additional Bicycles with increased affinity and inhibition of ACE2 enzymatic activity. This novel structural class of ACE2 inhibitors is among the most potent ACE2 inhibitors yet described in vitro, representing a valuable tool to further probe ACE2 function and for potential therapeutic utility.


Subject(s)
Angiotensin-Converting Enzyme 2 , Carboxypeptidases , Humans , Carboxypeptidases/chemistry , Peptidyl-Dipeptidase A , Bicycling , Peptides/pharmacology , Angiotensin II , Peptide Fragments
4.
Nat Commun ; 14(1): 3583, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328472

ABSTRACT

COVID-19 has stimulated the rapid development of new antibody and small molecule therapeutics to inhibit SARS-CoV-2 infection. Here we describe a third antiviral modality that combines the drug-like advantages of both. Bicycles are entropically constrained peptides stabilized by a central chemical scaffold into a bi-cyclic structure. Rapid screening of diverse bacteriophage libraries against SARS-CoV-2 Spike yielded unique Bicycle binders across the entire protein. Exploiting Bicycles' inherent chemical combinability, we converted early micromolar hits into nanomolar viral inhibitors through simple multimerization. We also show how combining Bicycles against different epitopes into a single biparatopic agent allows Spike from diverse variants of concern (VoC) to be targeted (Alpha, Beta, Delta and Omicron). Finally, we demonstrate in both male hACE2-transgenic mice and Syrian golden hamsters that both multimerized and biparatopic Bicycles reduce viraemia and prevent host inflammation. These results introduce Bicycles as a potential antiviral modality to tackle new and rapidly evolving viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Male , Animals , Cricetinae , Mice , Antiviral Agents/pharmacology , Peptides/pharmacology , Antibodies , Mesocricetus , Mice, Transgenic , Spike Glycoprotein, Coronavirus/genetics
5.
Antibiotics (Basel) ; 11(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36421280

ABSTRACT

Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to understand the molecular features that drive the interactions of membranes with membrane active peptides. This review examines the features of a membrane these peptides exploit for translocation, as well as the physicochemical characteristics of membrane active peptides which are important for translocation. Moreover, it presents examples of how these features have been used in recent years to create conjugates consisting of a membrane active peptide, called a "vector", attached to either a current or novel antibiotic, called a "cargo" or "payload". In addition, the review discusses what properties may contribute to an ideal peptide vector able to deliver cargoes across the bacterial outer membrane as the rising issue of antimicrobial resistance demands new strategies to be employed to combat this global public health threat.

6.
Mol Cancer Ther ; 21(12): 1747-1756, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36112771

ABSTRACT

Multiple tumor types overexpress Nectin-4 and the antibody-drug conjugate (ADC), enfortumab vedotin (EV) shows striking efficacy in clinical trials for metastatic urothelial cancer, which expresses high levels of Nectin-4, validating Nectin-4 as a clinical target for toxin delivery in this indication. Despite excellent data in urothelial cancer, little efficacy data are reported for EV in other Nectin-4 expressing tumors and EV therapy can produce significant toxicities in many patients, frequently leading to discontinuation of treatment. Thus, additional approaches to this target with the potential to extend utility and reduce toxicity are warranted. We describe the preclinical development of BT8009, a "Bicycle Toxin Conjugate" (BTC) consisting of a Nectin-4-binding bicyclic peptide, a cleavable linker system and the cell penetrant toxin mono-methylauristatin E (MMAE). BT8009 shows significant antitumor activity in preclinical tumor models, across a variety of cancer indications and is well tolerated in preclinical safety studies. In several models, it shows superior or equivalent antitumor activity to an EV analog. As a small hydrophilic peptide-based drug BT8009 rapidly diffuses from the systemic circulation, through tissues to penetrate the tumor and target tumor cells. It is renally eliminated from the circulation, with a half-life of 1-2 hours in rat and non-human primate. These physical and PK characteristics differentiate BT8009 from ADCs and may provide benefit in terms of tumor penetration and reduced systemic exposure. BT8009 is currently in a Phase 1/2 multicenter clinical trial across the US, Canada, and Europe, enrolling patients with advanced solid tumors associated with Nectin-4 expression.


Subject(s)
Carcinoma, Transitional Cell , Immunoconjugates , Immunotoxins , Rats , Animals , Nectins , Bicycling , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Cell Adhesion Molecules/metabolism , Carcinoma, Transitional Cell/drug therapy
7.
ACS Infect Dis ; 6(9): 2355-2361, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32697574

ABSTRACT

The treatment of infection by Gram-negative bacteria is increasingly challenging as resistance to existing antibiotics spreads. Constrained peptides, selected for high target specificity and affinity via library display technologies, are an emerging therapeutic modality in many disease areas and may be a fertile source of new antibiotics. Currently, the utility of constrained peptides and other large molecules as antibiotics is limited by the outer membrane (OM) barrier of Gram-negative bacteria. However, the addition of certain moieties to large molecules can confer the ability to cross the OM; these moieties function as intramolecular trans-OM "vectors". Here, we present a method to systematically assess the carrying capacity of candidate trans-OM vectors using a real-time luminescence assay ("SLALOM", Split Luciferase Assay for Live monitoring of Outer Membrane transit), reporting on periplasmic entry. We demonstrate the usefulness of our tools by constructing a 3800 Da chimeric compound composed of a constrained bicyclic peptide (Bicycle) with a periplasmic target, linked to an intramolecular peptide vector; the resulting chimera is a broad-spectrum inhibitor of pathogenic Gram-negative bacterial growth.


Subject(s)
Gram-Negative Bacteria , Periplasm , Anti-Bacterial Agents/pharmacology , Chimera
8.
Article in English | MEDLINE | ID: mdl-32266242

ABSTRACT

Integral membrane proteins (IMPs) are central to many physiological processes and represent ∼60% of current drug targets. An intricate interplay with the lipid molecules in the cell membrane is known to influence the stability, structure and function of IMPs. Detergents are commonly used to solubilize and extract IMPs from cell membranes. However, due to the loss of the lipid environment, IMPs usually tend to be unstable and lose function in the continuous presence of detergent. To overcome this problem, various technologies have been developed, including protein engineering by mutagenesis to improve IMP stability, as well as methods to reconstitute IMPs into detergent-free entities, such as nanodiscs based on apolipoprotein A or its membrane scaffold protein (MSP) derivatives, amphipols, and styrene-maleic acid copolymer-lipid particles (SMALPs). Although significant progress has been made in this field, working with inherently unstable human IMP targets (e.g., GPCRs, ion channels and transporters) remains a challenging task. Here, we present a novel methodology, termed DirectMX (for direct membrane extraction), taking advantage of the saposin-lipoprotein (Salipro) nanoparticle technology to reconstitute fragile IMPs directly from human crude cell membranes. We demonstrate the applicability of the DirectMX methodology by the reconstitution of a human solute carrier transporter and a wild-type GPCR belonging to the human chemokine receptor (CKR) family. We envision that DirectMX bears the potential to enable studies of IMPs that so far remained inaccessible to other solubilization, stabilization or reconstitution methods.

9.
Am J Physiol Gastrointest Liver Physiol ; 305(5): G383-91, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23812038

ABSTRACT

Nutritional stimulation of the cholecystokinin-1 receptor (CCK-1R) and nicotinic acetylcholine receptor (nAChR)-mediated vagal reflex was shown to reduce inflammation and preserve intestinal integrity. Mast cells are important early effectors of the innate immune response; therefore modulation of mucosal mast cells is a potential therapeutic target to control the acute inflammatory response in the intestine. The present study investigates intestinal mast cell responsiveness upon nutritional activation of the vagal anti-inflammatory reflex during acute inflammation. Mucosal mast cell degranulation was induced in C57/Bl6 mice by administration of Salmonella enterica LPS. Lipid-rich enteral feeding prior to LPS significantly decreased circulatory levels of mouse mast cell protease at 30 min post-LPS compared with isocaloric low-lipid nutrition or fasting. CCK-1R blockage reversed the inhibitory effects of lipid-rich feeding, whereas stimulation of the peripheral CCK-1R mimicked nutritional mast cell inhibition. The effects of lipid-rich nutrition were negated by nAChR blockers chlorisondamine and α-bungarotoxin and vagal intestinal denervation. Accordingly, release of ß-hexosaminidase by MC/9 mast cells following LPS or IgE-ovalbumin complexes was dose dependently inhibited by acetylcholine and nicotine. Application of GSK1345038A, a specific agonist of the nAChR α7, in bone marrow-derived mast cells from nAChR ß2-/- and wild types indicated that cholinergic inhibition of mast cells is mediated by the nAChR α7 and is independent of the nAChR ß2. Together, the present study reveals mucosal mast cells as a previously unknown target of the nutritional anti-inflammatory vagal reflex.


Subject(s)
Cell Degranulation , Dietary Fats/administration & dosage , Enteral Nutrition , Inflammation/prevention & control , Intestinal Mucosa/immunology , Intestinal Mucosa/innervation , Mast Cells/immunology , Reflex , Vagus Nerve/physiopathology , Animals , Cell Degranulation/drug effects , Cell Line , Cholinergic Agonists/pharmacology , Chymases/blood , Disease Models, Animal , Histamine Antagonists/pharmacology , Immunity, Mucosal , Inflammation/blood , Inflammation/immunology , Inflammation/physiopathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Lipopolysaccharides , Male , Mast Cells/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Nicotinic Antagonists/pharmacology , Receptor, Cholecystokinin A/metabolism , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Vagotomy, Proximal Gastric , Vagus Nerve/drug effects , Vagus Nerve/immunology , Vagus Nerve/metabolism , Vagus Nerve/surgery , beta-N-Acetylhexosaminidases/metabolism
10.
Gut ; 62(11): 1581-90, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23242119

ABSTRACT

OBJECTIVE: Intestinal inflammation resulting from manipulation-induced mast cell activation is a crucial mechanism in the pathophysiology of postoperative ileus (POI). Recently it has been shown that spleen tyrosine kinase (Syk) is involved in mast cell degranulation. Therefore, we have evaluated the effect of the Syk-inhibitor GSK compound 143 (GSK143) as potential treatment to shorten POI. DESIGN: In vivo: in a mouse model of POI, the effect of the Syk inhibitor (GSK143) was evaluated on gastrointestinal transit, muscular inflammation and cytokine production. In vitro: the effect of GSK143 and doxantrazole were evaluated on cultured peritoneal mast cells (PMCs) and bone marrow derived macrophages. RESULTS: In vivo: intestinal manipulation resulted in a delay in gastrointestinal transit at t=24 h (Geometric Center (GC): 4.4 ± 0.3). Doxantrazole and GSK143 significantly increased gastrointestinal transit (GC doxantrazole (10 mg/kg): 7.2 ± 0.7; GSK143 (1 mg/kg): 7.6 ± 0.6), reduced inflammation and prevented recruitment of immune cells in the intestinal muscularis. In vitro: in PMCs, substance P (0-90 µM) and trinitrophenyl (0-4 µg/ml) induced a concentration-dependent release of ß-hexosaminidase. Pretreatment with doxantrazole and GSK143 (0.03-10 µM) concentration dependently blocked substance P and trinitrophenyl induced ß-hexosaminidase release. In addition, GSK143 was able to reduce cytokine expression in endotoxin-treated bone marrow derived macrophages in a concentration-dependent manner. CONCLUSIONS: The Syk inhibitor GSK143 reduces macrophage activation and mast cell degranulation in vitro. In addition, it inhibits manipulation-induced intestinal muscular inflammation and restores intestinal transit in mice. These findings suggest that Syk inhibition may be a new tool to shorten POI.


Subject(s)
Aniline Compounds/therapeutic use , Ileus/prevention & control , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Postoperative Complications/prevention & control , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/therapeutic use , Aniline Compounds/administration & dosage , Aniline Compounds/pharmacology , Animals , Cell Degranulation/drug effects , Cells, Cultured , Cytokines/biosynthesis , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Gastrointestinal Transit/drug effects , Ileus/physiopathology , Macrophage Activation/drug effects , Mast Cells/drug effects , Mast Cells/physiology , Mice , Mice, Inbred C57BL , Ovalbumin/antagonists & inhibitors , Ovalbumin/pharmacology , Phosphodiesterase Inhibitors/therapeutic use , Postoperative Complications/physiopathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Substance P/antagonists & inhibitors , Substance P/pharmacology , Syk Kinase , Thioxanthenes/therapeutic use , Xanthones/therapeutic use
11.
Br J Pharmacol ; 160(2): 322-33, 2010 May.
Article in English | MEDLINE | ID: mdl-20423343

ABSTRACT

BACKGROUND AND PURPOSE: In various models vagus nerve activation has been shown to ameliorate intestinal inflammation, via nicotinic acetylcholine receptors (nAChRs) expressed on immune cells. As the alpha7 nAChR has been put forward to mediate this effect, we studied the effect of nicotine and two selective alpha7 nAChR agonists (AR-R17779, (-)-spiro[1-azabicyclo[2.2.2] octane-3,5'-oxazolidin-2'-one and GSK1345038A) on disease severity in two mouse models of experimental colitis. EXPERIMENTAL APPROACH: Colitis was induced by administration of 1.5% dextran sodium sulphate (DSS) in drinking water or 2 mg 2,4,6-trinitrobenzene sulphonic acid (TNBS) intrarectally. Nicotine (0.25 and 2.50 micromol.kg(-1)), AR-R17779 (0.6-30 micromol.kg(-1)) or GSK1345038A (6-120 micromol.kg(-1)) was administered daily by i.p. injection. After 7 (DSS) or 5 (TNBS) days clinical parameters and colonic inflammation were scored. KEY RESULTS: Nicotine and both alpha7 nAChR agonists reduced the activation of NF-kappaB and pro-inflammatory cytokines in whole blood and macrophage cultures. In DSS colitis, nicotine treatment reduced colonic cytokine production, but failed to reduce disease parameters. Reciprocally, treatment with AR-R17779 or GSK1345038A worsened disease and led to increased colonic pro-inflammatory cytokine levels in DSS colitis. The highest doses of GSK1345038A (120 micromol.kg(-1)) and AR-R17779 (30 micromol.kg(-1)) ameliorated clinical parameters, without affecting colonic inflammation. Neither agonist ameliorated TNBS-induced colitis. CONCLUSIONS AND IMPLICATIONS: Although nicotine reduced cytokine responses in vitro, both selective alpha7 nAChR agonists worsened the effects of DSS-induced colitis or were ineffective in those of TNBS-induced colitis. Our data indicate the need for caution in evaluating alpha7 nAChR as a drug target in colitis.


Subject(s)
Colitis/physiopathology , Nicotine/pharmacology , Nicotinic Agonists/toxicity , Receptors, Nicotinic/drug effects , Animals , Bridged-Ring Compounds/administration & dosage , Bridged-Ring Compounds/pharmacology , Bridged-Ring Compounds/toxicity , Cells, Cultured , Colitis/chemically induced , Cytokines/drug effects , Cytokines/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Injections, Intraperitoneal , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/drug effects , NF-kappa B/metabolism , Nicotine/administration & dosage , Nicotinic Agonists/administration & dosage , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/metabolism , Severity of Illness Index , Spiro Compounds/administration & dosage , Spiro Compounds/pharmacology , Spiro Compounds/toxicity , alpha7 Nicotinic Acetylcholine Receptor
12.
Am J Hum Genet ; 86(2): 148-60, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-20137774

ABSTRACT

Recessive mutations at the mouse pirouette (pi) locus result in hearing loss and vestibular dysfunction due to neuroepithelial defects in the inner ear. Using a positional cloning strategy, we have identified mutations in the gene Grxcr1 (glutaredoxin cysteine-rich 1) in five independent allelic strains of pirouette mice. We also provide sequence data of GRXCR1 from humans with profound hearing loss suggesting that pirouette is a model for studying the mechanism of nonsyndromic deafness DFNB25. Grxcr1 encodes a 290 amino acid protein that contains a region of similarity to glutaredoxin proteins and a cysteine-rich region at its C terminus. Grxcr1 is expressed in sensory epithelia of the inner ear, and its encoded protein is localized along the length of stereocilia, the actin-filament-rich mechanosensory structures at the apical surface of auditory and vestibular hair cells. The precise architecture of hair cell stereocilia is essential for normal hearing. Loss of function of Grxcr1 in homozygous pirouette mice results in abnormally thin and slightly shortened stereocilia. When overexpressed in transfected cells, GRXCR1 localizes along the length of actin-filament-rich structures at the dorsal-apical surface and induces structures with greater actin filament content and/or increased lengths in a subset of cells. Our results suggest that deafness in pirouette mutants is associated with loss of GRXCR1 function in modulating actin cytoskeletal architecture in the developing stereocilia of sensory hair cells.


Subject(s)
Ear, Inner/physiopathology , Genetic Loci/genetics , Glutaredoxins/genetics , Mutation/genetics , Actin Cytoskeleton , Alleles , Amino Acid Sequence , Animals , Base Sequence , Chromosome Mapping , Conserved Sequence , DNA Mutational Analysis , Evolution, Molecular , Female , Gene Expression Regulation , Glutaredoxins/chemistry , Hearing Loss/genetics , Hearing Loss/physiopathology , Humans , Male , Mice , Mice, Mutant Strains , Molecular Sequence Data , Pedigree , Protein Structure, Tertiary , Protein Transport
13.
J Neurosci ; 25(12): 3142-50, 2005 Mar 23.
Article in English | MEDLINE | ID: mdl-15788771

ABSTRACT

Ephrin signaling is involved in repulsive and attractive interactions mediating axon guidance and cell-boundary formation in the developing nervous system. As a result of a fortuitous transgene integration event, we have identified here a potential role for EphA5 in the axophilic migration of gonadotropin-releasing hormone (GnRH) neurons from the nasal placode into the brain along ephrin-expressing vomeronasal axons. Transgene integration in the GNR23 mouse line resulted in a 26 kb deletion in chromosome 5, approximately 67 kb 3' to Epha5. This induced a profound, region-specific upregulation of EphA5 mRNA and protein expression in the developing mouse brain. The GnRH neurons in GNR23 mice overexpressed EphA5 from embryonic day 11, whereas ephrin A3 and A5 mRNA levels in olfactory neurons were unchanged. The GnRH neurons were found to be slow in commencing their migration from the olfactory placode and also to form abnormal clusters of cells on the olfactory axons, prohibiting their migration out of the nose. As a result, adult hemizygous mice had only 40% of the normal complement of GnRH neurons in the brain, whereas homozygous mice had <15%. This resulted in infertility in adult female homozygous GNR23 mice, suggesting that some cases of human hypogonadotropic hypogonadism may result from ephrin-related mutations. These data provide evidence for a role of EphA-ephrin signaling in the axophilic migration of the GnRH neurons during embryogenesis.


Subject(s)
Axons/physiology , Cell Movement/physiology , Gonadotropin-Releasing Hormone/metabolism , Neurons/metabolism , Receptor, EphA5/metabolism , Signal Transduction/physiology , Animals , Animals, Newborn , Brain/cytology , Brain/metabolism , Cell Count/methods , Chromosome Mapping/methods , Embryo, Mammalian , Ephrins/classification , Ephrins/physiology , Gene Expression Regulation, Developmental/physiology , Genomic Library , Gonadotropin-Releasing Hormone/genetics , Immunohistochemistry/methods , In Situ Hybridization/methods , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Cell Adhesion Molecule L1/metabolism , Neurons/cytology , RNA, Messenger/metabolism , Receptor, EphA5/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Sialic Acids/metabolism
14.
Audiol Neurootol ; 9(5): 303-14, 2004.
Article in English | MEDLINE | ID: mdl-15347914

ABSTRACT

The mouse mutant 'pirouette' (pi) exhibits profound hearing loss and vestibular defects due to inheritance of a recessive mutation on chromosome 5. Dysfunction has been correlated with defects during maturation of sensory cells in the inner ear. As an initial step in characterizing pirouette at the genetic level, we have localized the candidate interval to a small region on central chromosome 5 by analysis of a congenic strain of pirouette mice. This region exhibits conserved synteny with human chromosome 4 and suggests that pirouette may be a genetic model of the human nonsyndromic deafness disorder DFNB25, which has been localized to 4p15.3-q12. In addition to the original spontaneous pirouette strain, we have identified and characterized 2 additional mouse strains with allelic mutations at the same locus. Analysis of the morphology in each of the 3 pirouette alleles indicated very similar early postnatal alterations in maturation of stereocilia and suggests that the gene affected in pirouette normally plays a role in building or maintaining these structures that are critical for sensory mechanotransduction.


Subject(s)
Deafness/genetics , Mutagenesis, Insertional , Mutation , Transgenes , Actins/analysis , Alleles , Animals , Cell Line , Evoked Potentials, Auditory, Brain Stem/genetics , Genotype , Hair Cells, Auditory/chemistry , Hair Cells, Auditory/ultrastructure , Humans , Immunohistochemistry , Membrane Glycoproteins , Mice , Mice, Mutant Strains , Microfilament Proteins/analysis , Microscopy, Electron, Scanning , Phosphoproteins/analysis
15.
Eur J Neurosci ; 16(8): 1433-41, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12405956

ABSTRACT

Stereocilia are specialized actin-filled, finger-like processes arrayed in rows of graded heights to form a crescent or W-shape on the apical surface of sensory hair cells. The stereocilia are deflected by the vibration of sound, which opens transduction channels and allows an influx of ions to depolarize the hair cell, in turn triggering synaptic activity. The specialized morphology and organization of the stereocilia bundle is crucial in the process of sensory transduction in the inner ear. However, we know little about the development of stereocilia in the mouse and few molecules that are involved in stereocilia maturation are known. We describe here a new mouse mutant with abnormal stereocilia development. The Tasmanian devil (tde) mouse mutation arose by insertional mutagenesis and has been mapped to the middle of chromosome 5. Homozygotes show head-tossing and circling and have raised thresholds for cochlear nerve responses to sound. The gross morphology of the inner ear was normal, but the stereocilia of cochlear and vestibular hair cells are abnormally thin, and they become progressively disorganized with increasing age. Ultimately, the hair cells die. This is the first report of a mutant showing thin stereocilia. The association of thin stereocilia with cochlear dysfunction emphasizes the critical role of stereocilia in auditory transduction, and the discovery of the Tasmanian devil mutant provides a resource for the identification of an essential molecule in hair cell function.


Subject(s)
Cilia/pathology , Deafness/genetics , Hair Cells, Auditory/abnormalities , Mutation/genetics , Nervous System Malformations/genetics , Action Potentials/genetics , Animals , Animals, Newborn , Cilia/ultrastructure , Cochlear Nerve/physiopathology , Deafness/metabolism , Deafness/pathology , Hair Cells, Auditory/pathology , Hair Cells, Auditory/ultrastructure , Hearing/genetics , Mice , Mice, Mutant Strains , Mice, Transgenic , Microscopy, Electron , Microscopy, Electron, Scanning , Nervous System Malformations/pathology , Signal Transduction/genetics , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...