Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed J ; 47(1): 100636, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37499756

ABSTRACT

In the broad field of inflammation, skeletal muscle is a tissue that is understudied. Yet it represents about 40% of body mass in non-obese individuals and is therefore of fundamental importance for whole body metabolism and health. This article provides an overview of the unique features of skeletal muscle tissue, as well as its adaptability to exercise. This ability to adapt, particularly with respect to mitochondrial content and function, confers a level of metabolic "protection" against energy consuming events, and adds a measure of quality control that determines the phenotypic response to stress. Thus, we describe the particular role of mitochondria in promoting inflammasome activation in skeletal muscle, contributing to muscle wasting and dysfunction in aging, disuse and metabolic disease. We will then discuss how exercise training can be anti-inflammatory, mitigating the chronic inflammation that is observed in these conditions, potentially through improvements in mitochondrial quality and function.


Subject(s)
Inflammasomes , Mitochondrial Diseases , Humans , Muscle, Skeletal , Exercise/physiology , Mitochondrial Diseases/metabolism , Inflammation/metabolism
2.
Am J Physiol Cell Physiol ; 325(4): C862-C884, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37575060

ABSTRACT

Mitochondria control cellular functions through their metabolic role. Recent research that has gained considerable attention is their ability to transfer between cells. This has the potential of improving cellular functions in pathological or energy-deficit conditions, but little is known about the role of mitochondrial transfer in sustaining cellular homeostasis. Few studies have investigated the potential of skeletal muscle as a source of healthy mitochondria that can be transferred to other cell types. Thus, we isolated intermyofibrillar mitochondria from murine skeletal muscle and incubated them with host cells. We observed dose- and time-dependent increases in mitochondrial incorporation into myoblasts. This resulted in elongated mitochondrial networks and an enhancement of bioenergetic profile of the host cells. Mitochondrial donation also rejuvenated the functional capacities of the myoblasts when respiration efficiency and lysosomal function were inhibited by complex I inhibitor rotenone and bafilomycin A, respectively. Mitochondrial transfer was accomplished via tunneling nanotubes, extracellular vesicles, gap junctions, and by macropinocytosis internalization. Murine muscle mitochondria were also effectively transferred to human fibroblast cells having mitochondrial DNA mutations, resulting in augmented mitochondrial dynamics and metabolic functions. This improved cell function by diminishing reactive oxygen species (ROS) emission in the diseased cells. Our findings suggest that mitochondria from donor skeletal muscle can be integrated in both healthy and functionally compromised host cells leading to mitochondrial structural refinement and respiratory boost. This mitochondrial trafficking and bioenergetic reprogramming to maintain and revitalize tissue homeostasis could be a useful therapeutic strategy in treating diseases.NEW & NOTEWORTHY In our study, we have shown the potential of mouse skeletal muscle intermyofibrillar mitochondria to be transplanted in myoblasts and human fibroblast cells having mitochondrial DNA mutations. This resulted in an augmentation of mitochondrial dynamics and enhancement of bioenergetic profile in the host cells. Our findings suggest that mitochondria from donor skeletal muscle can be integrated into both healthy and functionally compromised host cells leading to mitochondrial structural refinement and respiratory boost.


Subject(s)
Mitochondria , Muscle, Skeletal , Animals , Humans , Mice , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Mitochondria, Muscle/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Homeostasis
3.
Mol Metab ; 66: 101623, 2022 12.
Article in English | MEDLINE | ID: mdl-36332794

ABSTRACT

OBJECTIVES: The Mitochondrial Unfolded Protein Response (UPRmt) is a compartment-specific mitochondrial quality control (MQC) mechanism that uses the transcription factor ATF5 to induce the expression of protective enzymes to restore mitochondrial function. Acute exercise is a stressor that has the potential to temporarily disrupt organellar protein homeostasis, however, the roles of ATF5 and the UPRmt in maintaining basal mitochondrial content, function and exercise-induced MQC mechanisms in skeletal muscle are not known. METHODS: ATF5 KO and WT mice were examined at rest or after a bout of acute endurance exercise. We measured protein content in whole muscle, nuclear, cytosolic and mitochondrial fractions, in addition to mRNA transcript levels in whole muscle. Using isolated mitochondria, we quantified rates of oxygen consumption and ROS emission to observe the effects of the absence of ATF5 on organelle function. RESULTS: ATF5 KO mice exhibited a larger and less functional muscle mitochondrial pool, most likely a culmination of enhanced biogenesis via increased PGC-1α expression, and attenuated mitophagy. The absence of ATF5 resulted in a reduction in antioxidant proteins and increases in mitochondrial ROS emission, cytosolic cytochrome c, and the expression of mitochondrial chaperones. KO muscle also displayed enhanced exercise-induced stress kinase signaling, but a blunted mitophagic and UPRmt gene expression response, complemented by significant increases in the basal mRNA abundance and nuclear localization of ATF4. Instead of promoting its nuclear translocation, acute exercise caused the enrichment of ATF5 in mitochondrial fractions. We also identified PGC-1α as an additional regulator of the basal expression of UPRmt genes. CONCLUSION: The transcription factor ATF5 retains a critical role in the maintenance of mitochondrial homeostasis and the appropriate response of muscle to acute exercise for the optimization of mitochondrial quality control.


Subject(s)
Mitochondria , Muscle, Skeletal , Mice , Animals , Reactive Oxygen Species/metabolism , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Transcription Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Activating Transcription Factors/metabolism
4.
J Appl Physiol (1985) ; 133(6): 1381-1393, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36356257

ABSTRACT

Exercise is one of the only nonpharmacological remedies known to counteract genetic and chronic diseases by enhancing health and improving life span. Although the many benefits of regular physical activity have been recognized for some time, the intricate and complex signaling systems triggered at the onset of exercise have only recently begun to be uncovered. Exercising muscles initiate a coordinated, multisystemic, metabolic rewiring, which is communicated to distant organs by various molecular mediators. The field of exercise research has been expanding beyond the musculoskeletal system, with interest from industry to provide realistic models and exercise mimetics that evoke a whole body rejuvenation response. The 18th International Biochemistry of Exercise conference took place in Toronto, Canada, from May 25 to May 28, 2022, with more than 400 attendees. Here, we provide an overview of the most cutting-edge exercise-related research presented by 66 speakers, focusing on new developments in topics ranging from molecular and cellular mechanisms of exercise adaptations to exercise therapy and management of disease and aging. We also describe how the manipulation of these signaling pathways can uncover therapeutic avenues for improving human health and quality of life.


Subject(s)
Exercise , Quality of Life , Humans , Exercise/physiology , Adaptation, Physiological , Aging/physiology , Exercise Therapy , Muscle, Skeletal/metabolism
5.
Am J Physiol Cell Physiol ; 322(5): C913-C926, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35353634

ABSTRACT

The adaptive plasticity of mitochondria within a skeletal muscle is regulated by signals converging on a myriad of regulatory networks that operate during conditions of increased (i.e., exercise) and decreased (inactivity, disuse) energy requirements. Notably, some of the initial signals that induce adaptive responses are common to both conditions, differing in their magnitude and temporal pattern, to produce vastly opposing mitochondrial phenotypes. In response to exercise, signaling to peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α) and other regulators ultimately produces an abundance of high-quality mitochondria, leading to reduced mitophagy and a higher mitochondrial content. This is accompanied by the presence of an enhanced protein quality control system that consists of the protein import machinery as well chaperones and proteases termed the mitochondrial unfolded protein response (UPRmt). The UPRmt monitors intraorganelle proteostasis, and strives to maintain a mito-nuclear balance between nuclear- and mtDNA-derived gene products via retrograde signaling from the organelle to the nucleus. In addition, antioxidant capacity is improved, affording greater protection against oxidative stress. In contrast, chronic disuse conditions produce similar signaling but result in decrements in mitochondrial quality and content. Thus, the interactive cross talk of the regulatory networks that control organelle turnover during wide variations in muscle use and disuse remain incompletely understood, despite our improving knowledge of the traditional regulators of organelle content and function. This brief review acknowledges existing regulatory networks and summarizes recent discoveries of novel biological pathways involved in determining organelle biogenesis, dynamics, mitophagy, protein quality control, and antioxidant capacity, identifying ample protein targets for therapeutic intervention that determine muscle and mitochondrial health.


Subject(s)
Antioxidants , Muscle, Skeletal , Antioxidants/metabolism , Mitochondria/metabolism , Mitochondria, Muscle/metabolism , Mitochondrial Proteins/metabolism , Mitophagy/physiology , Muscle, Skeletal/metabolism , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...