Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36296365

ABSTRACT

Leucojum aestivum is a medicinal plant belonging to the Amaryllidaceae family well known as a producer of alkaloids such as galanthamine and lycorine. However, the endophytic microbes that colonize different plant tissues without causing any damage have not been reported in this plant. Here, we explored the different endophytic bacterial communities isolated from different surface disinfected tissues of L. aestivum 'Gravety giant' and screened bacterial isolates producing alkaloids and their potential use as biocontrol agent against wheat pathogens. For that purpose, endophytic bacteria were isolated from bulbs, roots and shoots of L. aestivum. After taxonomical characterization, these microorganisms were screened for their ability to produce alkaloids using high-performance thin-layer chromatography (HPTLC) and untargeted liquid chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) strategies. We isolated 138 bacteria belonging to four phyla and 42 genera, mainly from roots and shoots. The most abundant genera were Rahnella in shoot, Patulibacter in bulb and Bacillus in roots. Among the different bacterial isolates, the methanolic extracts of Luteibacter rhizovicinus (LaBFB3301) and Commamonas denitrificans (LaBFS2103) slightly delayed the growth of F. graminearum colonies in in vitro dual tests against F. graminearum and M. nivale strains with 15.5% and 19.9% inhibition rates, respectively. These isolates are able to produce an indolic alkaloid tryptophol (C10H11NO, [M + H]+ 162.0913). These endophytic bacteria might be investigated to characterize the plant protection effect and the plant growth promotion effect.

2.
Microorganisms ; 10(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35208667

ABSTRACT

The exploration of certain microbial resources such as beneficial endophytic microorganisms is considered a promising strategy for the discovery of new antimicrobial compounds for the pharmaceutical industries and agriculture. Thirty-one endophytic bacterial strains affiliated with Bacillus, Janthinobacterium, Yokenella, Enterobacter, Pseudomonas, Serratia, and Microbacterium were previously isolated from vetiver (Chrysopogon zizanioides (L.) Roberty) roots. These endophytes showed antifungal activity against Fusarium graminearum and could be a source of antimicrobial metabolites. In this study, in particular, using high-throughput screening, we analyzed their antagonistic activities and those of their cell-free culture supernatants against three species of Fusarium plant pathogens, a bacterial strain of Escherichia coli, and a yeast strain of Saccharomyces cerevisiae, as well as their capacity to produce lipopeptides. The results showed that the culture supernatants of four strains close to B. subtilis species exhibited antimicrobial activities against Fusarium species and E. coli. Using mass spectrometry analyses, we identified two groups of lipopeptides (surfactins and plipastatins) in their culture supernatants. Whole-genome sequencing confirmed that these bacteria possess NRPS gene clusters for surfactin and plipastatin. In vitro tests confirmed the inhibitory effect of plipastatin alone or in combination with surfactin against the three Fusarium species.

3.
Microbiol Res ; 243: 126650, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33302220

ABSTRACT

Given the current trend towards reducing the use of chemical controls in agriculture, microbial resources such as plant endophytes are being intensively investigated for traits that are conducive to plant protection. Among the various important target pathogens, Fusarium graminearum is a fungal pathogen of cereal crops that is responsible for severe yield losses and mycotoxin contamination in grains. In the present study, we investigated the bacterial endophytic communities from vetiver (Chrysopogon zizanioides (L.) Roberty) roots originating from 5 different geographic locations across Europe and Africa. This study relies on a global 16S metabarcoding approach and the isolation/functional characterization of bacterial isolates. The results we obtained showed that geographical location is a factor that influences the composition and relative abundance of root endophyte communities in vetiver. Three hundred eighty-one bacterial endophytes were isolated and assessed for their in vitro antagonistic activities towards F. graminearum mycelium growth. In total, 46 % of the isolates showed at least 50 % inhibitory activity against F. graminearum. The taxonomic identification of the bioactive isolates revealed that the composition of these functional culturable endophytic communities was influenced by the geographic origins of the roots. The selected communities consisted of 15 genera. Some endophytes in Bacillus, Janthinobacterium, Kosakonia, Microbacterium, Pseudomonas, and Serratia showed strong growth inhibition activity (≥70 %) against F. graminearum and could be candidates for further development as biocontrol agents.


Subject(s)
Bacteria/isolation & purification , Chrysopogon/microbiology , Endophytes/isolation & purification , Fusarium/growth & development , Microbiota , Plant Diseases/microbiology , Antibiosis , Bacteria/classification , Bacteria/genetics , Bacterial Physiological Phenomena , Endophytes/classification , Endophytes/genetics , Endophytes/physiology , Fusarium/physiology , Mycelium/growth & development , Mycelium/physiology , Phylogeny , Plant Roots/microbiology
4.
Microorganisms ; 8(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899776

ABSTRACT

An endophytic fungus isolated from Vernonia amygdalina, a medicinal plant from Sudan, was taxonomically characterized as Curvularia papendorfii. Ethyl acetate crude extract of C. papendorfii revealed an important antiviral effect against two viral pathogens, the human coronavirus HCoV 229E and a norovirus surrogate, the feline coronavirus FCV F9. For the last one, 40% of the reduction of the virus-induced cytopathogenic effect at lower multiplicity of infection (MOI) 0.0001 was observed. Selective antibacterial activity was obtained against Staphylococcus sp. (312 µg/mL), and interesting antiproliferative activity with half maximal inhibitory concentration (IC50) value of 21.5 ± 5.9 µg/mL was observed against human breast carcinoma MCF7 cell line. Therefore, C. papendorfii crude extract was further investigated and fractionated. Twenty-two metabolites were identified by gas chromatography coupled to mass spectrometry (GC-MS), and two pure compounds, mannitol and a new polyhydroxyacid, called kheiric acid, were characterized. A combination of spectroscopic methods was used to elucidate the structure of the new aliphatic carboxylic acid: kheiric acid (3,7,11,15-tetrahydroxy-18-hydroxymethyl-14,16,20,22,24-pentamethyl-hexacosa-4E,8E,12E,16,18-pentaenoic acid). Kheiric acid showed an interesting result with a minimum inhibitory concentration (MIC) value of 62.5 µg/mL against meticillin-resistant Staphylococcus aureus (MRSA). Hence, endophytes associated with medicinal plants from Sudan merit more attention, as they could be a treasure of new bioactive compounds.

5.
FEMS Microbiol Lett ; 363(11)2016 06.
Article in English | MEDLINE | ID: mdl-27190291

ABSTRACT

In this study, we isolated 15 endophytic fungi from five Sudanese medicinal plants. Each fungal endophytic strain was identified by sequencing of internal transcribed spacer (ITS) regions of rDNA. Ethyl acetate extracts were prepared from each endophyte cultivated in vitro and tested for their respective antibacterial activities and antiproliferative activities against human cancer cells. Antibacterial screening was carried out against two bacterial strains: Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus, by the broth dilution method. Cell viability was evaluated by the MTT procedure after exposure of MCF7 breast cancer cells and HT29 or HCT116 human colon adenocarcinoma cells to each endophytic extract. Of interest, Byssochlamys spectabilis isolated from Euphorbia prostata showed cytotoxicity (IC50 = 1.51 ± 0.2 µg mL(-1)) against MCF7 cells, but had a low effect against HT29 or HCT116 cells (IC50 > 20 µg mL(-1)). Cladosporium cladosporioides 2, isolated from Vernonia amygdalina leaves, showed antiproliferative activities against MCF7 cells (IC50 = 10.5 ± 1.5 µg mL(-1)) only. On the other hand, B. spectabilis and Alternaria sp. extract had antibacterial activities against the S. aureus strain. The findings of this work revealed that endophytic fungi associated with medicinal plants from Sudan could be considered as an attractive source of new therapeutic compounds.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Cytotoxins/isolation & purification , Cytotoxins/pharmacology , Endophytes/chemistry , Fungi/chemistry , Plants, Medicinal/microbiology , Acetates/chemistry , Alternaria/chemistry , Byssochlamys/chemistry , Byssochlamys/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cladosporium/chemistry , Cladosporium/isolation & purification , DNA, Ribosomal/genetics , Endophytes/genetics , Endophytes/growth & development , Endophytes/isolation & purification , Escherichia coli/drug effects , Euphorbia/microbiology , Fungi/genetics , Fungi/isolation & purification , Humans , Inhibitory Concentration 50 , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Plant Leaves/microbiology , Sudan , Vernonia/microbiology
6.
Microbiol Res ; 168(1): 12-21, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-22921900

ABSTRACT

Arylsulfatases allow microorganisms to satisfy their sulfur (S) requirements as inorganic sulfate after sulfate ester hydrolysis. Our objectives were to investigate the arylsulfatase activities among soil isolates, especially Streptomyces sp., Microbacterium sp. and Rhodococcus sp., because such investigations are limited for these bacteria, which often live in sulfate-limited conditions. Physiological and biochemical analyses indicated that these isolates possessed strong specific arylsulfatase activities ranging from 6 to 8 U. Moreover, for Streptomyces sp., an arylsulfatase localization study revealed 2 forms of arylsulfatases. A first form was located in the membrane, and a second form was located in the intracellular compartment. Both arylsulfatases had different patterns of induction. Indeed, the intracellular arylsulfatase was strictly induced by inorganic sulfate limitation, whereas the membrane arylsulfatase was induced both by substrate presence or S demand independently. For Microbacterium and Rhodococcus isolates, only a membrane arylsulfatase was found. Consequently, our results suggest the presence of a previously undescribed arylsulfatase in these microorganisms that allows them to develop an alternative strategy to fulfill their S requirements compared to bacteria previously studied in the literature.


Subject(s)
Actinomycetales/isolation & purification , Arylsulfatases/metabolism , Rhodococcus/isolation & purification , Soil Microbiology , Streptomyces/isolation & purification , Sulfates/metabolism , Actinomycetales/enzymology , Actinomycetales/metabolism , Arylsulfatases/genetics , Cell Membrane/enzymology , Cluster Analysis , Cytoplasm/enzymology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Models, Molecular , Molecular Sequence Data , Phylogeny , Rhodococcus/enzymology , Rhodococcus/metabolism , Sequence Analysis, DNA , Sequence Homology , Streptomyces/enzymology , Streptomyces/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...