Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Antiviral Res ; 212: 105575, 2023 04.
Article in English | MEDLINE | ID: mdl-36868316

ABSTRACT

With the resurgence of the coronavirus pandemic, the repositioning of FDA-approved drugs against coronovirus and finding alternative strategies for antiviral therapy are both important. We previously identified the viral lipid envelope as a potential target for the prevention and treatment of SARS-CoV-2 infection with plant alkaloids (Shekunov et al., 2021). Here, we investigated the effects of eleven cyclic lipopeptides (CLPs), including well-known antifungal and antibacterial compounds, on the liposome fusion triggered by calcium, polyethylene glycol 8000, and a fragment of SARS-CoV-2 fusion peptide (816-827) by calcein release assays. Differential scanning microcalorimetry of the gel-to-liquid-crystalline and lamellar-to-inverted hexagonal phase transitions and confocal fluorescence microscopy demonstrated the relation of the fusion inhibitory effects of CLPs to alterations in lipid packing, membrane curvature stress and domain organization. The antiviral effects of CLPs were evaluated in an in vitro Vero-based cell model, and aculeacin A, anidulafugin, iturin A, and mycosubtilin attenuated the cytopathogenicity of SARS-CoV-2 without specific toxicity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Membrane Fusion , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Anti-Retroviral Agents/pharmacology , Lipopeptides/pharmacology
2.
Article in English | MEDLINE | ID: mdl-36960941

ABSTRACT

A series of 1,2,3-triazolyl nucleoside analogues bearing N-acetyl-D-glucosamine residue was synthesized by the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction of N1-ω-alkynyl derivatives of uracil, 6-methyluracil, thymine and 3,4,6-tri-O-acetyl-2-deoxy-2-acetamido-ß-D-glucopyranosyl azide. Antiviral assays revealed the lead compound 3f which showed both the same activity against the influenza virus A H1N1 (IC50=70.7 µM) as the antiviral drug Rimantadine in control (IC50=77 µM) and good activity against Coxsackievirus B3 (IC50=13.9 µM) which was one and a half times higher than the activity of the antiviral drug Pleconaril in control (IC50=21.6 µM). According to molecular docking simulations, the antiviral activity of the lead compound 3f against Coxsackie B3 virus can be explained by its binding to a key fragment of the capsid surface of this virus.


Subject(s)
Influenza A Virus, H1N1 Subtype , Nucleosides , Antiviral Agents , Glucosamine/metabolism , Acetylglucosamine , Molecular Docking Simulation , Azides
3.
Molecules ; 27(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36234748

ABSTRACT

A series of 5'-phosphorylated (dialkyl phosphates, diaryl phosphates, phosphoramidates, H-phosphonates, phosphates) 1,2,3-triazolyl nucleoside analogues in which the 1,2,3-triazole-4-yl-ß-D-ribofuranose fragment is attached via a methylene group or a butylene chain to the N-1 atom of the heterocycle moiety (uracil or quinazoline-2,4-dione) was synthesized. All compounds were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1). Antiviral assays revealed three compounds, 13b, 14b, and 17a, which showed moderate activity against influenza virus A (H1N1) with IC50 values of 17.9 µM, 51 µM, and 25 µM, respectively. In the first two compounds, the quinazoline-2,4-dione moiety is attached via a methylene or a butylene linker, respectively, to the 1,2,3-triazole-4-yl-ß-D-ribofuranosyl fragment possessing a 5'-diphenyl phosphate substituent. In compound 17a, the uracil moiety is attached via the methylene unit to the 1,2,3-triazole-4-yl-ß-D-ribofuranosyl fragment possessing a 5'-(phenyl methoxy-L-alaninyl)phosphate substituent. The remaining compounds appeared to be inactive against influenza virus A/PR/8/34/(H1N1). The results of molecular docking simulations indirectly confirmed the literature data that the inhibition of viral replication is carried out not by nucleoside analogues themselves, but by their 5'-triphosphate derivatives.


Subject(s)
Influenza A Virus, H1N1 Subtype , Organophosphonates , Alkenes , Antiviral Agents/pharmacology , Molecular Docking Simulation , Nucleosides/pharmacology , Phosphates , Quinazolines/pharmacology , Structure-Activity Relationship , Triazoles/pharmacology , Uracil
4.
Fundam Clin Pharmacol ; 36(3): 518-525, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34984730

ABSTRACT

Due to high variability and rapid life cycle, influenza virus is able to develop drug resistance against direct-acting antivirals. Development of novel virus-in113039hibiting drugs is therefore important goal. Previously, we identified camphor derivative, camphecene, as an effective anti-influenza compound. In the present study, we optimize the regimen of its application to avoid high sub-toxic concentrations. The protective activity of camphecene was assessed on the model of lethal pneumonia of mice caused by influenza viruses. Camphecene was administered either once a day or four times a day, alone or in combination with Tamiflu. Mortality and viral titer in the lungs were studied. Pharmacokinetics of camphecene was studied in rabbits. We have demonstrated that camphecene, being used every 6 h at a dose of 7.5 mg/kg/day, results in antiviral effect that was statistically equal to the effect of 100 mg/kg/day once a day, that is, the same effect was achieved by 13 times lower daily dose of the drug. This effect was manifested in decrease of mortality and decrease of virus' titer in the lungs. The studies of pharmacokinetics of camphecene have demonstrated that it does not accumulate in blood plasma and that its m ultiple applications with dosage interval of 65 min are safe. In addition, the results of the study demonstrate also that camphecene possesses additive effect with Tamiflu, allowing to decrease the dose of the latter. The results suggest that due to safety and efficacy, camphecene can be further developed as potential anti-influenza remedy.


Subject(s)
Hepatitis C, Chronic , Influenza, Human , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Camphor/analogs & derivatives , Camphor/pharmacokinetics , Ethanolamines , Humans , Influenza, Human/drug therapy , Mice , Oseltamivir/therapeutic use , Rabbits
5.
Biomedicines ; 9(10)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34680551

ABSTRACT

To rationalize the antiviral actions of plant alkaloids, the ability of 20 compounds to inhibit calcium-mediated fusion of lipid vesicles composed of phosphatidylglycerol and cholesterol was investigated using the calcein release assay and dynamic light scattering. Piperine, tabersonine, hordenine, lupinine, quinine, and 3-isobutyl-1-methylxanthine demonstrated the most potent effects (inhibition index greater than 50%). The introduction of phosphatidylcholine into the phosphatidylglycerol/cholesterol mixture led to significant changes in quinine, hordenine, and 3-isobutyl-1-methylxanthine efficiency. Comparison of the fusion inhibitory ability of the tested alkaloids, and the results of the measurements of alkaloid-induced alterations in the physical properties of model membranes indicated a potent relationship between a decrease in the cooperativity of the phase transition of lipids and the ability of alkaloids to prevent calcium-mediated vesicle fusion. In order to use this knowledge to combat the novel coronavirus pandemic, the ability of the most effective compounds to suppress membrane fusion induced by fragments of MERS-CoV and SARS-CoV/SARS-CoV-2 fusion peptides was studied using the calcein release assay and confocal fluorescence microscopy. Piperine was shown to inhibit vesicle fusion mediated by both coronavirus peptides. Moreover, piperine was shown to significantly reduce the titer of SARS-CoV2 progeny in vitro in Vero cells when used in non-toxic concentrations.

6.
Molecules ; 26(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208647

ABSTRACT

A series of 1,2,3-triazolyl nucleoside analogues in which 1,2,3-triazol-4-yl-ß-d-ribofuranosyl fragments are attached via polymethylene linkers to both nitrogen atoms of the heterocycle moiety (uracil, 6-methyluracil, thymine, quinazoline-2,4-dione, alloxazine) or to the C-5 and N-3 atoms of the 6-methyluracil moiety was synthesized. All compounds synthesized were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1) and coxsackievirus B3. Antiviral assays revealed three compounds, 2i, 5i, 11c, which showed moderate activity against influenza virus A H1N1 with IC50 values of 57.5 µM, 24.3 µM, and 29.2 µM, respectively. In the first two nucleoside analogues, 1,2,3-triazol-4-yl-ß-d-ribofuranosyl fragments are attached via butylene linkers to N-1 and N-3 atoms of the heterocycle moiety (6-methyluracil and alloxazine, respectively). In nucleoside analogue 11c, two 1,2,3-triazol-4-yl-2',3',5'-tri-O-acetyl-ß-d-ribofuranose fragments are attached via propylene linkers to the C-5 and N-3 atoms of the 6-methyluracil moiety. Almost all synthesized 1,2,3-triazolyl nucleoside analogues showed no antiviral activity against the coxsackie B3 virus. Two exceptions are 1,2,3-triazolyl nucleoside analogs 2f and 5f, in which 1,2,3-triazol-4-yl-2',3',5'-tri-O-acetyl-ß-d-ribofuranose fragments are attached to the C-5 and N-3 atoms of the heterocycle moiety (6-methyluracil and alloxazine respectively). These compounds exhibited high antiviral potency against the coxsackie B3 virus with IC50 values of 12.4 and 11.3 µM, respectively, although both were inactive against influenza virus A H1N1. According to theoretical calculations, the antiviral activity of the 1,2,3-triazolyl nucleoside analogues 2i, 5i, and 11c against the H1N1 (A/PR/8/34) influenza virus can be explained by their influence on the functioning of the polymerase acidic protein (PA) of RNA-dependent RNA polymerase (RdRp). As to the antiviral activity of nucleoside analogs 2f and 5f against coxsackievirus B3, it can be explained by their interaction with the coat proteins VP1 and VP2.


Subject(s)
Antiviral Agents/pharmacology , Nucleosides/analogs & derivatives , Nucleosides/chemistry , Click Chemistry/methods , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Molecular Docking Simulation , Pyrimidines/chemistry , RNA-Dependent RNA Polymerase , Structure-Activity Relationship
7.
J Org Chem ; 86(2): 1489-1504, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33372515

ABSTRACT

Trimethylsilyl ethers of 1,5-diaryl-3-(trifluoromethyl)-pent-1-en-4-yn-3-oles [Ar-C≡C-C(CF3)(OSiMe3)-CH═CH-Ar'] in the superacid TfOH give rise to reactive conjugated CF3-allylic-propargylic cations [Ar-C≡C-C+(CF3)-CH═CH-Ar']. These species react with arenes in the presence of 1.5 equiv of TfOH forming regio- and stereoselectively E-1,1,5-triaryl-3-(trifluoromethyl)-pent-2-en-4-ynes [Ar-C≡C-C(CF3)═CH-CHAr'(Ar″)] in good yields. In the excess of TfOH, these CF3-pentenynes are further intramolecularly cyclized into CF3-bicyclic dihydroanthracene derivatives ("helicopter"-like molecules). The CF3-pentenynes may also react with arenes, as external nucleophiles, leading to CF3-indenes. These two main reaction pathways depend on internal nucleophilicity of aryl substituents in CF3-pentenynes and external nucleophilicity of aromatic molecules. Plausible cationic reaction mechanisms have been discussed. CF3-bicyclic dihydroanthracene derivatives have been studied regarding their cytotoxicity and virus-inhibiting activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cell line.


Subject(s)
Indenes , Influenza A Virus, H1N1 Subtype , Cations , Ethers
8.
Nat Prod Res ; 35(22): 4256-4264, 2021 Nov.
Article in English | MEDLINE | ID: mdl-31790286

ABSTRACT

Novel derivatives of quinolizidine alkaloid (-)-cytisine were synthesised. ADME properties, cytotoxicity against HEK293 cells and activity against viruses of influenza A/California/07/09(H1N1)pdm09 virus (IAV) and human parainfluenza virus type 3 (HPIV3) were evaluated. It was shown, that 9-carboxamides of methylcytisine (with phenyl and allyl urea's fragments) are most active compounds against IAV probably due to predicted in silico peculiarity of their interactions with the 4R7B active site of IAV neuraminidase. Indexes of selectivity (SI) calculated as ratio of CC50/IC50 of these ureas are 47 and 59 correspondingly. It was also found, that derivatives obtained from allyl isocyanate and (-)-cytisine or 9,11-dibromocytisine are able to inhibit a reproduction of HPIV3 with SI = 58 and 95. Moreover, last compound - (1 R,5R)-N-allyl-9,11-dibromo-8-oxo-1,5,6,8-tetrahydro-2H-1,5-methanopyrido[1,2-a][1,5]diazocine-3(4H)-carboxamide with two bromine atom in 2-pyridone core of starting (-)-cytisine molecule, demonstrated high activity against HPIV3 (SI = 95) and moderate activity against IAV (SI = 16).


Subject(s)
Alkaloids , Influenza A Virus, H1N1 Subtype , Influenza, Human , Quinolizidines , Alkaloids/pharmacology , Amides , Antiviral Agents/pharmacology , Azocines , HEK293 Cells , Humans , Parainfluenza Virus 3, Human , Quinolizines
9.
Mol Divers ; 25(1): 473-490, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32930935

ABSTRACT

Based on the fact that a search for influenza antivirals among nucleoside analogues has drawn very little attention of chemists, the present study reports the synthesis of a series of 1,2,3-triazolyl nucleoside analogues in which a pyrimidine fragment is attached to the ribofuranosyl-1,2,3-triazol-4-yl moiety by a polymethylene linker of variable length. Target compounds were prepared by the Cu alkyne-azide cycloaddition (CuAAC) reaction. Derivatives of uracil, 6-methyluracil, 3,6-dimethyluracil, thymine and quinazolin-2,4-dione with ω-alkyne substituent at the N1 (or N5) atom and azido 2,3,5-tri-O-acetyl-D-ß-ribofuranoside were used as components of the CuAAC reaction. All compounds synthesized were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1) and coxsackievirus B3. The best values of IC50 (inhibiting concentration) and SI (selectivity index) were demonstrated by the lead compound 4i in which the 1,2,3-triazolylribofuranosyl fragment is attached to the N1 atom of the quinazoline-2,4-dione moiety via a butylene linker (IC50 = 30 µM, SI = 24) and compound 8n in which the 1,2,3-triazolylribofuranosyl fragment is attached directly to the N5 atom of the 6-methyluracil moiety (IC50 = 15 µM, SI = 5). According to theoretical calculations, the antiviral activity of the 1,2,3-triazolyl nucleoside analogues 4i and 8n against H1N1 (A/PR/8/34) influenza virus can be explained by their influence on the functioning of the polymerase acidic protein (PA) of RNA-dependent RNA polymerase (RdRP).


Subject(s)
Antiviral Agents/chemical synthesis , Nucleosides/chemical synthesis , Nucleosides/pharmacology , Triazoles/chemical synthesis , Triazoles/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cell Death/drug effects , Chlorocebus aethiops , Dogs , Enterovirus/drug effects , Influenza A Virus, H1N1 Subtype/drug effects , Madin Darby Canine Kidney Cells , Molecular Docking Simulation , Nucleosides/chemistry , Thermodynamics , Triazoles/chemistry , Vero Cells
10.
Bioorg Med Chem Lett ; 31: 127677, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33171219

ABSTRACT

We synthesized fluoro- and hydroxy-containing octahydro-2H-chromenes by the Prins reaction starting from a monoterpenoid (-)-isopulegol and a wide range of aromatic aldehydes in the presence of the BF3∙Et2O/H2O system acting as both an acid catalyst and a fluorine source. Activity of the produced compounds against the influenza A/Puerto Rico/8/34 (H1N1) virus was studied. The highest activity was demonstrated by fluoro- (11i) and hydroxy-containing (10i) derivatives of 2,4,6-trimethoxybenzaldehyde. The most pronounced virus-inhibiting effect of compounds 10i and 11i was observed at an early stage of infection. These compounds were supposed to be capable of binding to viral hemagglutinin, which is an agreement with data on the effect of compounds 10i and 11i on the viral fusogenic activity as well as by molecular docking studies.


Subject(s)
Antiviral Agents/pharmacology , Benzopyrans/pharmacology , Cyclohexane Monoterpenes/pharmacology , Influenza A virus/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Caco-2 Cells , Cell Death/drug effects , Cyclohexane Monoterpenes/chemical synthesis , Cyclohexane Monoterpenes/chemistry , Dogs , Dose-Response Relationship, Drug , Humans , Madin Darby Canine Kidney Cells/drug effects , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 30(24): 127653, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33129992

ABSTRACT

We synthesized a series of amides with a benzo[d][1,3]dithiol core. The chemical library of compounds was tested for their cytotoxicity and inhibiting activity against influenza virus A/California/07/09 (H1N1)pdm09 in MDCK cells. For each compound, values of CC50, IC50 and selectivity index (SI) were determined. Compounds of this structure type were for the first time found to exhibit anti-influenza activity. The structure of an amide substituent in the tested compounds was demonstrated to have a significant effect on their activity against the H1N1 influenza virus and cytotoxicity. Compound 4d has a high selectivity index of about 30. 4d was shown to be most potent at early stages of viral cycle. In direct fusogenic assay it demonstrated dose-dependent activity against fusogenic activity of hemagglutinin of influenza virus. Based on molecular docking and regression analysis data, viral hemagglutinin was suggested as possible target for these new antiviral agents.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Toluene/analogs & derivatives , Animals , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/drug therapy , Madin Darby Canine Kidney Cells , Molecular Docking Simulation , Orthomyxoviridae Infections/drug therapy , Toluene/chemistry , Toluene/pharmacology
12.
Molecules ; 24(13)2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31277334

ABSTRACT

New 1'-homocarbanucleoside analogs with an optically active substituted bicyclo[2.2.1]heptane skeleton as sugar moiety were synthesized. The pyrimidine analogs with uracil, 5-fluorouracil, thymine and cytosine and key intermediate with 6-chloropurine (5) as nucleobases were synthesized by a selective Mitsunobu reaction on the primary hydroxymethyl group in the presence of 5-endo-hydroxyl group. Adenine and 6-substituted adenine homonucleosides were obtained by the substitution of the 6-chlorine atom of the key intermediate 5 with ammonia and selected amines, and 6-methoxy- and 6-ethoxy substituted purine homonucleosides by reaction with the corresponding alkoxides. No derivatives appeared active against entero, yellow fever, chikungunya, and adeno type 1viruses. Two compounds (6j and 6d) had lower IC50 (15 ± 2 and 21 ± 4 µM) and compound 6f had an identical value of IC50 (28 ± 4 µM) to that of acyclovir, suggesting that the bicyclo[2.2.1]heptane skeleton could be further studied to find a candidate for sugar moiety of the nucleosides.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Glycosides/chemistry , Heptanes/chemistry , Nucleosides/chemistry , Nucleosides/pharmacology , Drug Design , Humans , Ligands , Microbial Sensitivity Tests , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Nucleosides/analogs & derivatives , Purines/chemistry , Spectrum Analysis , Structure-Activity Relationship , Sugars/chemistry
13.
Arch Pharm (Weinheim) ; 352(2): e1800225, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30520524

ABSTRACT

Influenza remains a highly pathogenic and hardly controlled human infection. The ability of selecting drug-resistant variants necessitates the search and development of novel anti-influenza drugs. Herein, we describe the synthesis and evaluation of a series of novel 2-substituted 7,8-dihydro-6H-imidazo[2,1-b][1,3]benzothiazol-5-ones 3a-k for their virus-inhibiting activity against influenza A virus. The new analogues 3a-k prepared in two steps from commercially available cyclohexane-1,3-diones were fully characterized by their NMR and mass spectral data. Among the new derivatives screened for cytotoxicity and in vitro antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells, three analogues 3i-k containing a thiophene unit were found to exhibit high virus-inhibiting activity (high SI values) and a favorable toxicity profile. The compound 3j (CC50 : >1000 µM, SI = 77) with higher potency is the best anti-influenza hit analogue for further structural optimization and drug development. The most active compounds did not inhibit viral neuraminidase and possess therefore other targets and mechanisms of activity than the currently used neuraminidase inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Benzothiazoles/pharmacology , Imidazoles/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Dogs , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Influenza, Human/drug therapy , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Neuraminidase/drug effects , Structure-Activity Relationship
14.
Arch Virol ; 163(8): 2121-2131, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29633078

ABSTRACT

Viral respiratory infections are raising serious concern globally. Asian medicinal plants could be useful in improving the current treatment strategies for influenza. The present study examines the activity of five plants from Bangladesh against influenza virus. MDCK cells infected with influenza virus A/Puerto Rico/8/34 (H1N1) were treated with increasing concentrations of ethyl acetate extracts, and their cytotoxicity (CC50), virus-inhibiting activity (IC50), and selectivity index (SI) were calculated. The ethyl acetate extract of fruits of Embelia ribes Burm. f. (Myrsinaceae) had the highest antiviral activity, with an IC50 of 0.2 µg/mL and a SI of 32. Its major constituent, embelin, was further isolated and tested against the same virus. Embelin demonstrated antiviral activity, with an IC50 of 0.3 µM and an SI of 10. Time-of-addition experiments revealed that embelin was most effective when added at early stages of the viral life cycle (0-1 h postinfection). Embelin was further evaluated against a panel of influenza viruses including influenza A and B viruses that were susceptible or resistant to rimantadine and oseltamivir. Among the viruses tested, avian influenza virus A/mallard/Pennsylvania/10218/84 (H5N2) was the most susceptible to embelin (SI = 31), while A/Aichi/2/68 (H3N2) virus was the most resistant (SI = 5). In silico molecular docking showed that the binding site for embelin is located in the receptor-binding domain of the viral hemagglutinin. The results of this study provide evidence that E. ribes can be used for development of a novel alternative anti-influenza plant-based agent.


Subject(s)
Antiviral Agents/pharmacology , Embelia/chemistry , Influenza A virus/drug effects , Influenza B virus/drug effects , Influenza, Human/virology , Plant Extracts/pharmacology , Antiviral Agents/chemistry , Benzoquinones/chemistry , Benzoquinones/pharmacology , Humans , Influenza A virus/physiology , Influenza B virus/physiology , Plant Extracts/chemistry
15.
Bioorg Med Chem Lett ; 27(19): 4531-4535, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28886889

ABSTRACT

The antiviral activity of several diaza-adamantanes containing monoterpenoid moieties against a rimantadine-resistant strain of the influenza A/Puerto Rico/8/34 (H1N1) virus was studied. Hetero-adamantanes containing monoterpene moieties at the aminal position of the heterocycle were found to exhibit lower activity compared to compounds with a diaza-adamantane fragment and a monoterpene moiety linked via an amino group at the 6-position of the hetero-adamantane ring. The highest selectivity index (a ratio of the 50% cytotoxic concentration to the 50% inhibitory concentration) out of 30 was observed for compound 8d, which contains a citronellal monoterpenoid moiety. Diaza-adamantane 8d was superior to its adamantane-containing analog 5 both in its anti-influenza activity and selectivity. Furthermore, 8d has more balanced physicochemical properties than 5, making the former a more promising drug candidate. Modelling these compounds against an influenza virus M2 ion channel predicted plausible binding modes to both the wild-type and the mutant (S31N).


Subject(s)
Adamantane/pharmacology , Antiviral Agents/pharmacology , Aza Compounds/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Monoterpenes/pharmacology , Adamantane/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Aza Compounds/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Monoterpenes/chemistry , Structure-Activity Relationship
16.
Prion ; 7(3): 248-52, 2013.
Article in English | MEDLINE | ID: mdl-23764838

ABSTRACT

Myocilin is a protein with a molecular weight near 50 kDa. It is expressed in almost all organs and tissues. We showed that the peptide DQLETQTRELETAYSNLLRD corresponding to N-terminal Leucine zipper motif (LZM) of the protein is able to form amyloid-like fibrils. The possible role of this motif in myocilin aggregation is discussed.


Subject(s)
Amyloid/chemistry , Cytoskeletal Proteins/chemistry , Eye Proteins/chemistry , Glycoproteins/chemistry , Leucine Zippers , Amino Acid Sequence , Amyloid/metabolism , Amyloid/ultrastructure , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/ultrastructure , Eye Proteins/metabolism , Eye Proteins/ultrastructure , Glycoproteins/metabolism , Glycoproteins/ultrastructure , Humans , Molecular Sequence Data
17.
Pharmaceuticals (Basel) ; 4(12): 1518-1534, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-27721336

ABSTRACT

Respiratory viral infections constitute the most frequent reason for medical consultations in the World. They can be associated with a wide range of clinical manifestations ranging from self-limited upper respiratory tract infections to more devastating conditions such as pneumonia. In particular, in serious cases influenza A leads to pneumonia, which is particularly fatal in patients with cardiopulmonary diseases, obesity, young children and the elderly. In the present study, we show a protective effect of the low-molecular weight compound Ingavirin (6-[2-(1H-imidazol-4-yl)ethylamino]-5-oxohexanoic acid) against influenza A (H1N1) virus, human parainfluenza virus and human adenovirus infections in animals. Mortality, weight loss, infectious titer of the virus in tissues and tissue morphology were monitored in the experimental groups of animals. The protective action of Ingavirin was observed as a reduction of infectious titer of the virus in the lung tissue, prolongation of the life of the infected animals, normalization of weight dynamics throughout the course of the disease, lowering of mortality of treated animals compared to a placebo control and normalization of tissue structure. In case of influenza virus infection, the protective activity of Ingavirin was similar to that of the reference compound Tamiflu. Based on the results obtained, Ingavirin should be considered as an important part of anti-viral prophylaxis and therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...