Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 240: 153005, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31271976

ABSTRACT

Many areas exhibiting increased concentrations of soluble salts are simultaneously polluted with heavy metals (HM), and halophytes with extended tolerance to heavy metal toxicity seem to represent a promising tool for their phytoremediation. In this study, the response of the soil-grown C3-CAM (Crassulacean acid metabolism) intermediate halophyte Mesembryanthemum crystallinum (common ice plant) to increased concentrations of Cd (0.01-1 mM) was investigated. None of the tested Cd treatments affected growth parameters or tissue water content of either C3 or CAM-performing plants. Chlorophyll a fluorescence confirmed high tolerance of the photosynthetic apparatus of both metabolic states towards Cd. Plants performing both photosynthesis types accumulated significant Cd amounts only under the highest (1 mM) treatment, and the metal was primarily deposited in the roots, which are features typical of an excluding strategy. Upon the application of 1 mM Cd solution CAM-performing plants, due to the NaCl pre-treatment applied for CAM induction, were exposed to significantly higher amounts of bioavailable Cd in comparison with those of C3-performing plants. As a result, roots of CAM plants accumulated over 4-fold higher Cd amounts when compared with C3 plants. In our opinion, enhanced Cd-accumulating potential observed in CAM-performing plants was the effect of osmotic stress episode and resulting modifications e.g. in the detoxifying capacity of the antioxidative system. Increased antioxidative potential of NaCl pre-treated plants was pronounced with significantly higher activity of CuZnSOD (copper-zinc superoxide dismutase), not achievable in C3 plants subjected to high Cd concentrations. Moreover, the applied Cd doses induced SOD activity in a compartment-dependent manner only in C3 plants. We confirmed that none of the applied Cd concentrations initiated the metabolic shift from C3 to CAM.


Subject(s)
Cadmium/adverse effects , Mesembryanthemum/drug effects , Salt-Tolerant Plants/drug effects , Soil Pollutants/adverse effects , Dose-Response Relationship, Drug , Mesembryanthemum/enzymology , Mesembryanthemum/growth & development , Mesembryanthemum/metabolism , Plant Roots/drug effects , Plant Roots/enzymology , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/enzymology , Plant Shoots/growth & development , Plant Shoots/metabolism , Salt-Tolerant Plants/enzymology , Salt-Tolerant Plants/growth & development , Salt-Tolerant Plants/metabolism , Superoxide Dismutase/metabolism
2.
Mycorrhiza ; 28(3): 235-246, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29359253

ABSTRACT

Phytoremediation of polluted sites can be improved by co-inoculation with mycorrhizal and endophytic fungi. In this study, the effects of single- and co-inoculation of Lactuca serriola with an arbuscular mycorrhizal (AM) fungus, Rhizoglomus intraradices, and endophytic fungi, Mucor sp. or Trichoderma asperellum, on plant growth, vitality, toxic metal accumulation, sesquiterpene lactone production and flavonoid concentration in the presence of toxic metals were evaluated. Inoculation with the AM fungus increased biomass yield of the plants grown on non-polluted and polluted substrate. Co-inoculation with the AM fungus and Mucor sp. resulted in increased biomass yield of plants cultivated on the polluted substrate, whereas co-inoculation with T. asperellum and the AM fungus increased plant biomass on the non-polluted substrate. In the presence of Mucor sp., mycorrhizal colonization and arbuscule richness were increased in the non-polluted substrate. Co-inoculation with the AM fungus and Mucor sp. increased Zn concentration in leaves and roots. The concentration of sesquiterpene lactones in plant leaves was decreased by AM fungus inoculation in both substrates. Despite enhanced host plant costs caused by maintaining symbiosis with numerous microorganisms, interaction of wild lettuce with both mycorrhizal and endophytic fungi was more beneficial than that with a single fungus. The study shows the potential of double inoculation in unfavourable environments, including agricultural areas and toxic metal-polluted areas.


Subject(s)
Biodegradation, Environmental/drug effects , Endophytes/drug effects , Lactuca/growth & development , Lactuca/microbiology , Mycorrhizae/drug effects , Soil Pollutants/adverse effects , Endophytes/physiology , Glomeromycota/physiology , Mucor/physiology , Mycorrhizae/physiology , Poland , Trichoderma/physiology
SELECTION OF CITATIONS
SEARCH DETAIL