Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 137(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38738282

ABSTRACT

Advances in imaging, segmentation and tracking have led to the routine generation of large and complex microscopy datasets. New tools are required to process this 'phenomics' type data. Here, we present 'Cell PLasticity Analysis Tool' (cellPLATO), a Python-based analysis software designed for measurement and classification of cell behaviours based on clustering features of cell morphology and motility. Used after segmentation and tracking, the tool extracts features from each cell per timepoint, using them to segregate cells into dimensionally reduced behavioural subtypes. Resultant cell tracks describe a 'behavioural ID' at each timepoint, and similarity analysis allows the grouping of behavioural sequences into discrete trajectories with assigned IDs. Here, we use cellPLATO to investigate the role of IL-15 in modulating human natural killer (NK) cell migration on ICAM-1 or VCAM-1. We find eight behavioural subsets of NK cells based on their shape and migration dynamics between single timepoints, and four trajectories based on sequences of these behaviours over time. Therefore, by using cellPLATO, we show that IL-15 increases plasticity between cell migration behaviours and that different integrin ligands induce different forms of NK cell migration.


Subject(s)
Cell Movement , Interleukin-15 , Killer Cells, Natural , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Interleukin-15/metabolism , Software , Intercellular Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
2.
Curr Biol ; 33(5): 957-972.e5, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36805126

ABSTRACT

Astrocytes are increasingly understood to be important regulators of central nervous system (CNS) function in health and disease; yet, we have little quantitative understanding of their complex architecture. While broad categories of astrocytic structures are known, the discrete building blocks that compose them, along with their geometry and organizing principles, are poorly understood. Quantitative investigation of astrocytic complexity is impeded by the absence of high-resolution datasets and robust computational approaches to analyze these intricate cells. To address this, we produced four ultra-high-resolution datasets of mouse cerebral cortex using serial electron microscopy and developed astrocyte-tailored computer vision methods for accurate structural analysis. We unearthed specific anatomical building blocks, structural motifs, connectivity hubs, and hierarchical organizations of astrocytes. Furthermore, we found that astrocytes interact with discrete clusters of synapses and that astrocytic mitochondria are distributed to lie closer to larger clusters of synapses. Our findings provide a geometrically principled, quantitative understanding of astrocytic nanoarchitecture and point to an unexpected level of complexity in how astrocytes interact with CNS microanatomy.


Subject(s)
Astrocytes , Synapses , Animals , Mice , Astrocytes/physiology , Synapses/physiology , Cerebral Cortex
3.
PLoS Biol ; 13(3): e1002119, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25826604

ABSTRACT

During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK) activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration) of a guidance cue is limiting.


Subject(s)
Growth Cones/drug effects , Hedgehog Proteins/pharmacology , Nerve Growth Factors/pharmacology , Spinal Cord/drug effects , Tumor Suppressor Proteins/pharmacology , src-Family Kinases/genetics , Animals , Chemotaxis/physiology , Embryo, Mammalian , Gene Expression Regulation, Developmental , Growth Cones/metabolism , Growth Cones/ultrastructure , Hedgehog Proteins/deficiency , Hedgehog Proteins/genetics , Lab-On-A-Chip Devices , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Imaging , Nerve Growth Factors/deficiency , Nerve Growth Factors/genetics , Netrin-1 , Primary Cell Culture , Signal Transduction , Spinal Cord/growth & development , Spinal Cord/metabolism , Spinal Cord/ultrastructure , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...