Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Biol Chem ; 270(35): 20668-76, 1995 Sep 01.
Article in English | MEDLINE | ID: mdl-7657646

ABSTRACT

To clone the mammalian gene(s) associated with a novel lipophilic antifolate resistance provoked by the antiparasitic drug pyrimethamine (Assaraf, Y. G., and Slotky, J. I. (1993) J. Biol. Chem. 268, 4556-4566), differential screening of a cDNA library from pyrimethamine-resistant (PyrR100) cells was used. This library was screened with total cDNA from wild-type and PyrR100 cells. Surprisingly, several differentially overexpressed cDNA clones were isolated from PyrR100 cells, many of which mapped to the mitochondrial genome. Several lines of evidence establish mitochondria as a new target for the cytotoxic activity of pyrimethamine. (a) At > or = 10 microM, pyrimethamine inhibited mitochondrial respiration in viable wild-type cells. (b) Electron microscopy revealed degenerated mitochondrial membrane cristae in PyrR100 cells. (c) Some mitochondrially encoded transcripts were prominently elevated, whereas the normally stable 12 S/16 S rRNA was decreased in PyrR100 cells. (d) Metabolic pulse-chase labeling suggested an increased turnover rate of mitochondrially synthesized proteins in PyrR100 cells. (e) The specific activity of the key respiratory enzymatic complex cytochrome c oxidase was reduced by 6-fold in PyrR100 cells. (f) Consequently, the rate of respiration in intact PyrR100 cells was reduced by 3-fold. We conclude that pyrimethamine and possibly lipophilic analogues of methotrexate possess a folinic acid nonrescuable toxicity involving disruption of mitochondrial inner membrane structure and respiratory function, thereby establishing a new organellar target for the cytotoxic effect elicited by lipid-soluble antifolates.


Subject(s)
DNA, Mitochondrial/metabolism , Electron Transport Complex IV/biosynthesis , Folic Acid Antagonists/pharmacology , Gene Expression/drug effects , Mitochondria/metabolism , NADH Dehydrogenase/biosynthesis , Oxygen Consumption/drug effects , Pyrimethamine/pharmacology , Adenosine Triphosphatases/biosynthesis , Animals , Blotting, Southern , CHO Cells , Clone Cells , Cloning, Molecular , Cricetinae , DNA, Complementary , DNA, Mitochondrial/isolation & purification , Drug Resistance/genetics , Ferritins/biosynthesis , Gene Library , Mammals , Microscopy, Electron , Mitochondria/drug effects , Mitochondria/ultrastructure , Oxygen Consumption/genetics , Restriction Mapping , Transcription, Genetic/drug effects
2.
J Biol Chem ; 268(6): 4556-66, 1993 Feb 25.
Article in English | MEDLINE | ID: mdl-8440739

ABSTRACT

We describe the characterization of an antitumor drug resistance following multiple step selection of hamster cells to the 2,4-diaminopyrimidines (DAP) metoprine, pyrimethamine (Pyr), and trimethoprim (Tmp). Pyr and Tmp are DAP lipophilic antifolates currently used as antiparasitic and antibacterial antibiotics, respectively. Dihydrofolate reductase (DHFR) from hamster cells bore a low or poor affinity to these DAP as compared to the hydrophilic folate antagonist methotrexate (MTX). Metoprine-resistant cells over-expressed DHFR enzyme and consequently displayed a high level of resistance to both hydrophilic and lipophilic antifolates including DAP but maintained wild type sensitivity to pleiotropic drugs involved in multi-drug resistance (MDR). In contrast, although Pyr- and Tmp-resistant cells expressed parental levels of wild type DHFR, they displayed a high degree of resistance to DAP and, surprisingly, to the lipophilic MTX analogs piritrexim (PTX) and trimetrexate (TMTX), while maintaining sensitivity to MTX. These drug-resistant cells maintained wild type mRNA levels of the MDR gene product P-glycoprotein and showed collateral hypersensitivity to pleiotropic drugs. To study the underlying mechanism of this apparently new resistance phenotype, we have employed fluorescein-methotrexate (F-MTX) labeling of cells and its displacement by different antifolates. Parental AA8 and Pyr-resistant cells showed a similar level of F-MTX labeling, however, while DAP, TMTX, and PTX showed an efficient competitive displacement of F-MTX from AA8 cells, Pyr-resistant cells displayed a persistent retention of F-MTX labeling in the presence of high concentrations of these lipophilic antifolates. Pyr-resistant cells showed a wild type displacement of F-MTX with MTX. This DAP resistance phenotype was unstable as it was rapidly lost upon growth under nonselective conditions. Furthermore, when the antifolate resistance levels of Pyr-resistant cells were plotted versus the ratios of the 50% F-MTX displacement values obtained with resistant and parental AA8 cells, a good correlation (r2 > 0.98) was obtained. We conclude that Pyr-resistant cells possess a novel phenotype that derives its resistance to lipophilic antifolates solely from a predominant decrease in the accumulation of DAP and lipid-soluble analogs of MTX.


Subject(s)
Folic Acid Antagonists/pharmacology , Pyrimethamine/pharmacology , Animals , CHO Cells , Cell Survival/drug effects , Cricetinae , Drug Resistance , Flow Cytometry , Leucovorin/pharmacology , Pyrimethamine/analogs & derivatives , Pyrimethamine/metabolism , RNA, Messenger/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Trimethoprim/metabolism , Trimethoprim/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL