Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1249581, 2023.
Article in English | MEDLINE | ID: mdl-37885896

ABSTRACT

Introduction: Q fever, caused by the intracellular bacterium Coxiella burnetii, is considered an occupational and biodefense hazard and can result in debilitating long-term complications. While natural infection and vaccination induce humoral and cellular immune responses, the exact nature of cellular immune responses to C. burnetii is incompletely understood. The current study seeks to investigate more deeply the nature of long-term cellular recall responses in naturally exposed individuals by both cytokine release assessment and cytometry profiling. Methods: Individuals exposed during the 2007-2010 Dutch Q fever outbreak were grouped in 2015, based on a C. burnetii-specific IFNγ release assay (IGRA), serological status, and self-reported clinical symptoms during initial infection, into asymptomatic IGRA-negative/seronegative controls, and three IGRA-positive groups (seronegative/asymptomatic; seropositive/asymptomatic and seropositive/symptomatic). Recall responses following in vitro re-stimulation with heat-inactivated C. burnetii in whole blood, were assessed in 2016/2017 by cytokine release assays (n=55) and flow cytometry (n=36), and in blood mononuclear cells by mass cytometry (n=36). Results: Cytokine release analysis showed significantly elevated IL-2 responses in all seropositive individuals and elevated IL-1ß responses in those recovered from symptomatic infection. Comparative flow cytometry analysis revealed significantly increased IFNγ, TNFα and IL-2 recall responses by CD4 T cells and higher IL-6 production by monocytes from symptomatic, IGRA-positive/seropositive individuals compared to controls. Mass cytometry profiling and unsupervised clustering analysis confirmed recall responses in seropositive individuals by two activated CD4 T cell subsets, one characterized by a strong Th1 cytokine profile (IFNγ+IL-2+TNFα+), and identified C. burnetii-specific activation of CD8 T cells in all IGRA-positive groups. Remarkably, increased C. burnetii-specific responses in IGRA-positive individuals were also observed in three innate cell subpopulations: one characterized by an IFNγ+IL-2+TNFα+ Th1 cytokine profile and lack of canonical marker expression, and two IL-1ß-, IL-6- and IL-8-producing CD14+ monocyte subsets that could be the drivers of elevated secretion of innate cytokines in pre-exposed individuals. Discussion: These data highlight that there are long-term increased responses to C. burnetii in both adaptive and innate cellular compartments, the latter being indicative of trained immunity. These findings warrant future studies into the protective role of these innate responses and may inform future Q fever vaccine design.


Subject(s)
Coxiella burnetii , Q Fever , Humans , Tumor Necrosis Factor-alpha , Interleukin-2 , Interleukin-6 , Cytokines , Immunity, Innate
2.
FASEB Bioadv ; 5(7): 287-304, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37415930

ABSTRACT

While progress has been made in the development of islet cell transplantation (ICT) as a viable alternative to the use of exogenous insulin therapy in the treatment of type 1 diabetes, it has not yet achieved its full potential in clinical studies. Ideally, ICT would enable lifelong maintenance of euglycemia without the need for exogenous insulin, blood glucose monitoring or systemic immune suppression. To achieve such an optimal result, therapeutic approaches should simultaneously promote long-term islet viability, functionality, and localized immune protection. In practice, however, these factors are typically tackled individually. Furthermore, while the requirements of optimal ICT are implicitly acknowledged across numerous publications, the literature contains few comprehensive articulations of the target product profile (TPP) for an optimal ICT product, including key characteristics of safety and efficacy. This review aims to provide a novel TPP for ICT and presents promising tried and untried combinatorial approaches that could be used to achieve the target product profile. We also highlight regulatory barriers to the development and adoption of ICT, particularly in the United States, where ICT is only approved for use in academic clinical trials and is not reimbursed by insurance carriers. Overall, this review argues that the clear definition of a TPP in addition to the use of combinatorial approaches could help to overcome the clinical barriers to the widespread adoption of ICT for the treatment of type 1 diabetes.

3.
FASEB Bioadv ; 5(4): 156-170, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37020749

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths worldwide. Surgery and chemoradiation are the standard of care in early stages of non-small cell lung cancer (NSCLC), while immunotherapy is the standard of care in late-stage NSCLC. The immune composition of the tumor microenvironment (TME) is recognized as an indicator for responsiveness to immunotherapy, although much remains unknown about its role in responsiveness to surgery or chemoradiation. In this pilot study, we characterized the NSCLC TME using mass cytometry (CyTOF) and bulk RNA sequencing (RNA-Seq) with deconvolution of RNA-Seq being performed by Kassandra, a recently published deconvolution tool. Stratification of patients based on the intratumoral abundance of B cells identified that the B-cell rich patient group had increased expression of CXCL13 and greater abundance of PD1+ CD8 T cells. The presence of B cells and PD1+ CD8 T cells correlated positively with the presence of intratumoral tertiary lymphoid structures (TLS). We then assessed the predictive and prognostic utility of these cell types and TLS within publicly available stage 3 and 4 lung adenocarcinoma (LUAD) RNA-Seq datasets. As previously described by others, pre-treatment expression of intratumoral 12-chemokine TLS gene signature is associated with progression free survival (PFS) in patients who receive treatment with immune checkpoint inhibitors (ICI). Notably and unexpectedly pre-treatment percentages of intratumoral B cells are associated with PFS in patients who receive surgery, chemotherapy, or radiation. Further studies to confirm these findings would allow for more effective patient selection for both ICI and non-ICI treatments.

4.
Sci Adv ; 8(49): eabq6527, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36475798

ABSTRACT

As severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) evolves to escape natural antibodies, it also loses sensitivity to therapeutic antibody drugs. By contrast, evolution selects for binding to ACE2, the cell-surface receptor required for SARS-CoV-2 infection. Consistent with this, we find that an ACE2 decoy neutralizes antibody-resistant variants, including Omicron, with no loss in potency. To identify design features necessary for in vivo activity, we compare several enzymatically inactive, Fc effector-silenced ACE2-Fc decoys. Inclusion of the ACE2 collectrin-like domain not only improves affinity for the S protein but also unexpectedly extends serum half-life and is necessary to reduce disease severity and viral titer in Syrian hamsters. Fc effector function is not required. The activity of ACE2 decoy receptors is due, in part, to their ability to trigger an irreversible structural change in the viral S protein. Our studies provide a new understanding of how ACE2 decoys function and support their development as therapeutics to treat ACE2-dependent coronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans
5.
Front Immunol ; 13: 886698, 2022.
Article in English | MEDLINE | ID: mdl-35812430

ABSTRACT

Q fever is a zoonotic disease caused by the highly infectious Gram-negative coccobacillus, Coxiella burnetii (C. burnetii). The Q fever vaccine Q-VAX® is characterised by high reactogenicity, requiring individuals to be pre-screened for prior exposure before vaccination. To date it remains unclear whether vaccine side effects in pre-exposed individuals are associated with pre-existing adaptive immune responses to C. burnetii or are also a function of innate responses to Q-VAX®. In the current study, we measured innate and adaptive cytokine responses to C. burnetii and compared these among individuals with different pre-exposure status. Three groups were included: n=98 Dutch blood bank donors with unknown exposure status, n=95 Dutch village inhabitants with known natural exposure status to C. burnetii during the Dutch Q fever outbreak of 2007-2010, and n=96 Australian students receiving Q-VAX® vaccination in 2021. Whole blood cytokine responses following ex vivo stimulation with heat-killed C. burnetii were assessed for IFNγ, IL-2, IL-6, IL-10, TNFα, IL-1ß, IP-10, MIP-1α and IL-8. Serological data were collected for all three cohorts, as well as data on skin test and self-reported vaccine side effects and clinical symptoms during past infection. IFNγ, IP-10 and IL-2 responses were strongly elevated in individuals with prior C. burnetii antigen exposure, whether through infection or vaccination, while IL-1ß, IL-6 and TNFα responses were slightly increased in naturally exposed individuals only. High dimensional analysis of the cytokine data identified four clusters of individuals with distinct cytokine response signatures. The cluster with the highest levels of adaptive cytokines and antibodies comprised solely individuals with prior exposure to C. burnetii, while another cluster was characterized by high innate cytokine production and an absence of C. burnetii-induced IP-10 production paired with high baseline IP-10 levels. Prior exposure status was partially associated with these signatures, but could not be clearly assigned to a single cytokine response signature. Overall, Q-VAX® vaccination and natural C. burnetii infection were associated with comparable cytokine response signatures, largely driven by adaptive cytokine responses. Neither individual innate and adaptive cytokine responses nor response signatures were associated retrospectively with clinical symptoms during infection or prospectively with side effects post-vaccination.


Subject(s)
Coxiella burnetii , Q Fever , Australia , Chemokine CXCL10 , Cytokines , Humans , Interleukin-2 , Interleukin-6 , Retrospective Studies , Tumor Necrosis Factor-alpha , Vaccination/adverse effects
6.
Front Immunol ; 13: 901372, 2022.
Article in English | MEDLINE | ID: mdl-35651616

ABSTRACT

T cell-mediated immunity plays a central role in the control and clearance of intracellular Coxiella burnetii infection, which can cause Q fever. Therefore, we aimed to develop a novel T cell-targeted vaccine that induces pathogen-specific cell-mediated immunity to protect against Q fever in humans while avoiding the reactogenicity of the current inactivated whole cell vaccine. Human HLA class II T cell epitopes from C. burnetii were previously identified and selected by immunoinformatic predictions of HLA binding, conservation in multiple C. burnetii isolates, and low potential for cross-reactivity with the human proteome or microbiome. Epitopes were selected for vaccine inclusion based on long-lived human T cell recall responses to corresponding peptides in individuals that had been naturally exposed to the bacterium during a 2007-2010 Q fever outbreak in the Netherlands. Multiple viral vector-based candidate vaccines were generated that express concatemers of selected epitope sequences arranged to minimize potential junctional neo-epitopes. The vaccine candidates caused no antigen-specific reactogenicity in a sensitized guinea pig model. A subset of the vaccine epitope peptides elicited antigenic recall responses in splenocytes from C57BL/6 mice previously infected with C. burnetii. However, immunogenicity of the vaccine candidates in C57BL/6 mice was dominated by a single epitope and this was insufficient to confer protection against an infection challenge, highlighting the limitations of assessing human-targeted vaccine candidates in murine models. The viral vector-based vaccine candidates induced antigen-specific T cell responses to a broader array of epitopes in cynomolgus macaques, establishing a foundation for future vaccine efficacy studies in this large animal model of C. burnetii infection.


Subject(s)
Coxiella burnetii , Q Fever , Animals , Antibodies, Bacterial , Bacterial Vaccines , Disease Models, Animal , Epitopes, T-Lymphocyte , Guinea Pigs , Humans , Mice , Mice, Inbred C57BL , Peptides , Q Fever/prevention & control , T-Lymphocytes
7.
FASEB J ; 35(12): e22019, 2021 12.
Article in English | MEDLINE | ID: mdl-34792819

ABSTRACT

Exogenously applied mature naïve B220+ /CD19+ /IgM+ /IgD+ B cells are strongly protective in the context of tissue injury. However, the mechanisms by which B cells detect tissue injury and aid repair remain elusive. Here, we show in distinct models of skin and brain injury that MyD88-dependent toll-like receptor (TLR) signaling through TLR2/6 and TLR4 is essential for the protective benefit of B cells in vivo, while B cell-specific deletion of MyD88 abrogated this effect. The B cell response to injury was multi-modal with simultaneous production of both regulatory cytokines, such as IL-10, IL-35, and transforming growth factor beta (TGFß), and inflammatory cytokines, such as tumor necrosis factor alpha (TNFα), IL-6, and interferon gamma. Cytometry analysis showed that this response was time and environment-dependent in vivo, with 20%-30% of applied B cells adopting an immune modulatory phenotype with high co-expression of anti- and pro-inflammatory cytokines after 18-48 h at the injury site. B cell treatment reduced the expression of TNFα and increased IL-10 and TGFß in infiltrating immune cells and fibroblasts at the injury site. Proteomic analysis further showed that B cells have a complex time-dependent homeostatic effect on the injured microenvironment, reducing the expression of inflammation-associated proteins, and increasing proteins associated with proliferation, tissue remodeling, and protection from oxidative stress. These findings chart and validate a first mechanistic understanding of the effects of B cells as an immunomodulatory cell therapy in the context of tissue injury.


Subject(s)
B-Lymphocytes/physiology , Brain Injuries/prevention & control , Cytokines/metabolism , Myeloid Differentiation Factor 88/physiology , Skin/immunology , Wound Healing , Animals , Brain Injuries/etiology , Brain Injuries/metabolism , Brain Injuries/pathology , Interleukin-10/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Signal Transduction , Skin/injuries , Skin/metabolism , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Front Immunol ; 12: 701811, 2021.
Article in English | MEDLINE | ID: mdl-34394097

ABSTRACT

For the zoonotic disease Q fever, serological analysis plays a dominant role in the diagnosis of Coxiella burnetii infection and in pre-screening for past exposure prior to vaccination. A number of studies suggest that assessment of C. burnetii-specific T-cell IFNγ responses may be a more sensitive tool to assess past exposure. In this study, we assessed the performance of a whole blood C. burnetii IFNγ release assay in comparison to serological detection in an area of high Q fever incidence in 2014, up to seven years after initial exposure during the Dutch Q fever outbreak 2007-2010. In a cohort of >1500 individuals from the Dutch outbreak village of Herpen, approximately 60% had mounted IFNγ responses to C. burnetii. This proportion was independent of the Coxiella strain used for stimulation and much higher than the proportion of individuals scored sero-positive using the serological gold standard immunofluorescence assay. Moreover, C. burnetii-specific IFNγ responses were found to be more durable than antibody responses in two sub-groups of individuals known to have sero-converted as of 2007 or previously reported to the municipality as notified Q fever cases. A novel ready-to-use version of the IFNγ release assay assessed in a subgroup of pre-exposed individuals in 2021 (10-14 years post exposure) proved again to be more sensitive than serology in detecting past exposure. These data demonstrate that C. burnetii-induced IFNγ release is indeed a more sensitive and durable marker of exposure to C. burnetii than are serological responses. In combination with a simplified assay version suitable for implementation in routine diagnostic settings, this makes the assessment of IFNγ responses a valuable tool for exposure screening to obtain epidemiological data, and to identify previously exposed individuals in pre-vaccination screens.


Subject(s)
Antibodies, Bacterial/immunology , Antibody Formation/immunology , Biomarkers/blood , Coxiella burnetii/immunology , Interferon-gamma/blood , Interferon-gamma/immunology , Animals , Cross-Sectional Studies , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/microbiology , Q Fever/blood , Q Fever/immunology , Q Fever/microbiology , Zoonoses/blood , Zoonoses/immunology , Zoonoses/microbiology
9.
Cell Rep Med ; 2(12): 100480, 2021 12 21.
Article in English | MEDLINE | ID: mdl-35028619

ABSTRACT

The existing human vaccine against Q fever, a zoonotic disease of biothreat concern, is approved only in Australia. In this issue of Cell Reports Medicine, Gregory and colleagues describe a new vaccine candidate that overcomes specific concerns hindering wider acceptance of the commercial vaccine.1.


Subject(s)
Q Fever , Animals , Australia , Bacterial Vaccines , Humans , Q Fever/prevention & control , Vaccination , Zoonoses
10.
Infect Immun ; 87(10)2019 10.
Article in English | MEDLINE | ID: mdl-31331958

ABSTRACT

Infection with Coxiella burnetii, the causative agent of Q fever, can result in life-threatening persistent infection. Reactogenicity hinders worldwide implementation of the only licensed human Q fever vaccine. We previously demonstrated long-lived immunoreactivity in individuals with past symptomatic and asymptomatic Coxiella infection (convalescents) to promiscuous HLA class II C. burnetii epitopes, providing the basis for a novel T-cell targeted subunit vaccine. In this study, we investigated in a cohort of 22 individuals treated for persistent infection (chronic Q fever) whether they recognize the same set of epitopes or distinct epitopes that could be candidates for a therapeutic vaccine or aid in the diagnosis of persistent infection. In cultured enzyme-linked immunosorbent spot (ELISpot) assays, individuals with chronic Q fever showed strong class II epitope-specific responses that were largely overlapping with the peptide repertoire identified previously for convalescents. Five additional peptides were recognized more frequently by chronic subjects, but there was no combination of epitopes uniquely recognized by or nonreactive in subjects with chronic Q fever. Consistent with more recent/prolonged exposure, we found, however, stronger ex vivo responses by direct ELISpot to both whole-cell C. burnetii and individual peptides in chronic patients than in convalescents. In conclusion, we have validated and expanded a previously published set of candidate epitopes for a novel T-cell targeted subunit Q fever vaccine in treated patients with chronic Q fever and demonstrated that they successfully mounted a T-cell response comparable to that of convalescents. Finally, we demonstrated that individuals treated for chronic Q fever mount a broader ex vivo response to class II epitopes than convalescents, which could be explored for diagnostic purposes.


Subject(s)
Antibodies, Bacterial/biosynthesis , Antigens, Bacterial/immunology , Coxiella burnetii/immunology , Epitopes, T-Lymphocyte/immunology , Q Fever/immunology , Aged , Anti-Bacterial Agents/therapeutic use , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Bacterial Vaccines/chemistry , Bacterial Vaccines/immunology , Chronic Disease , Convalescence , Coxiella burnetii/pathogenicity , Enzyme-Linked Immunospot Assay , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Female , Gene Expression , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Histocompatibility Testing , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Male , Middle Aged , Peptides/genetics , Peptides/immunology , Q Fever/drug therapy , Q Fever/genetics , Q Fever/prevention & control , T-Lymphocytes/immunology , T-Lymphocytes/microbiology
11.
Front Immunol ; 10: 207, 2019.
Article in English | MEDLINE | ID: mdl-30828331

ABSTRACT

Coxiella burnetii, the causative agent of Q fever, is a Gram-negative intracellular bacterium transmitted via aerosol. Regulatory approval of the Australian whole-cell vaccine Q-VAX® in the US and Europe is hindered by reactogenicity in previously exposed individuals. The aim of this study was to identify and rationally select C. burnetii epitopes for design of a safe, effective, and less reactogenic T-cell targeted human Q fever vaccine. Immunoinformatic methods were used to predict 65 HLA class I epitopes and 50 promiscuous HLA class II C. burnetii epitope clusters, which are conserved across strains of C. burnetii. HLA binding assays confirmed 89% of class I and 75% of class II predictions, and 11 HLA class II epitopes elicited IFNγ responses following heterologous DNA/DNA/peptide/peptide prime-boost immunizations of HLA-DR3 transgenic mice. Human immune responses to the predicted epitopes were characterized in individuals naturally exposed to C. burnetii during the 2007-2010 Dutch Q fever outbreak. Subjects were divided into three groups: controls with no immunological evidence of previous infection and individuals with responses to heat-killed C. burnetii in a whole blood IFNγ release assay (IGRA) who remained asymptomatic or who experienced clinical Q fever during the outbreak. Recall responses to C. burnetii epitopes were assessed by cultured IFNγ ELISpot. While HLA class I epitope responses were sparse in this cohort, we identified 21 HLA class II epitopes that recalled T-cell IFNγ responses in 10-28% of IGRA+ subjects. IGRA+ individuals with past asymptomatic and symptomatic C. burnetii infection showed a comparable response pattern and cumulative peptide response which correlated with IGRA responses. None of the peptides elicited reactogenicity in a C. burnetii exposure-primed guinea pig model. These data demonstrate that a substantial proportion of immunoinformatically identified HLA class II epitopes show long-lived immunoreactivity in naturally infected individuals, making them desirable candidates for a novel human multi-epitope Q fever vaccine.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Coxiella burnetii/immunology , Epitopes, T-Lymphocyte/immunology , Immunologic Memory , Q Fever/immunology , Animals , Bacterial Vaccines/immunology , Biomarkers , CD4-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Enzyme-Linked Immunospot Assay , Guinea Pigs , HLA Antigens/immunology , HLA Antigens/metabolism , Humans , Immunization , Immunogenicity, Vaccine , Interferon-gamma/biosynthesis , Q Fever/metabolism , Q Fever/prevention & control
12.
FASEB J ; 33(5): 6596-6608, 2019 05.
Article in English | MEDLINE | ID: mdl-30802149

ABSTRACT

Blockade of immune-checkpoint programmed cell death protein 1 (PD-1) or programmed cell death ligand 1 can enhance effector T-cell responses. However, the lack of response in many patients to checkpoint-inhibitor therapies emphasizes the need for combination immunotherapies to pursue maximal antitumor efficacy. We have previously demonstrated that antagonism of C-X-C chemokine receptor type 4 (CXCR4) by plerixafor (AMD3100) can decrease regulatory T (Treg)-cell intratumoral infiltration. Therefore, a combination of these 2 therapies might increase antitumor effects. Here, we evaluated the antitumor efficacy of AMD3100 and anti-PD-1 (αPD-1) antibody alone or in combination in an immunocompetent syngeneic mouse model of ovarian cancer. We found that AMD3100, a highly specific CXCR4 antagonist, directly down-regulated the expression of both C-X-C motif chemokine 12 (CXCL12) and CXCR4 in vitro and in vivo in tumor cells. AMD3100 and αPD-1 significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice when given as monotherapy. Combination of these 2 agents significantly enhanced antitumor effects compared with single-agent administration. Benefits of tumor control and animal survival were associated with immunomodulation mediated by these 2 agents, which were characterized by increased effector T-cell infiltration, increased effector T-cell function, and increased memory T cells in tumor microenvironment. Intratumoral Treg cells were decreased, and conversion of Treg cells into T helper cells was increased by AMD3100 treatment. Intratumoral myeloid-derived suppressor cells were decreased by the combined treatment, which was associated with decreased IL-10 and IL-6 in the ascites. Also, the combination therapy decreased suppressive leukocytes and facilitated M2-to-M1 macrophage polarization in the tumor. These results suggest that AMD3100 could be used to target the CXCR4-CXCL12 axis to inhibit tumor growth and prevent multifaceted immunosuppression alone or in combination with αPD-1 in ovarian cancer, which could be clinically relevant to patients with this disease.-Zeng, Y., Li, B., Liang, Y., Reeves, P. M., Qu, X., Ran, C., Liu, Q., Callahan, M. V., Sluder, A. E., Gelfand, J. A., Chen, H., Poznansky, M. C. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment.


Subject(s)
B7-H1 Antigen , Chemokine CXCL12 , Heterocyclic Compounds/pharmacology , Immune Tolerance/drug effects , Neoplasm Proteins , Ovarian Neoplasms , Programmed Cell Death 1 Receptor , Receptors, CXCR4 , Signal Transduction , Tumor Microenvironment , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Benzylamines , Cell Line, Tumor , Chemokine CXCL12/antagonists & inhibitors , Chemokine CXCL12/immunology , Cyclams , Female , Mice , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/immunology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
13.
PLoS One ; 13(10): e0205882, 2018.
Article in English | MEDLINE | ID: mdl-30312355

ABSTRACT

Historically, vaccination with Coxiella burnetii whole cell vaccines has induced hypersensitivity reactions in humans and animals that have had prior exposure to the pathogen as a result of infection or vaccination. Intradermal skin testing is routinely used to evaluate exposure in humans, and guinea pig hypersensitivity models have been developed to characterize the potential for reactogenicity in vaccine candidates. Here we describe a refinement of the guinea pig model using an alternate vaccine for positive controls. An initial comparative study used viable C. burnetii to compare the routes of sensitizing exposure of guinea pigs (intranasal vs intraperitoneal), evaluation of two time points for antigen challenge (21 and 42 days) and an assessment of two routes (intradermal and subcutaneous) of challenge using the ruminant vaccine Coxevac as the antigenic control. Animals sensitized by intraperitoneal exposure exhibited slightly larger gross reactions than did those sensitized by intranasal exposure, and reactions were more pronounced when skin challenge was performed at 42 days compared to 21 days post-sensitization. The intradermal route proved to be the optimal route of reactogenicity challenge. Histopathological changes at injection sites were similar to those previously reported and a scoring system was developed to compare reactions between groups receiving vaccine by intradermal versus subcutaneous routes. Based on the comparative study, a standardized protocol for assessment of vaccine reactogenicity in intranasally-sensitized animals was tested in a larger confirmatory study. Results suggest that screens utilizing a group size of n = 3 would achieve 90% power for detecting exposure-related reactogenic responses of the magnitude induced by Coxevac using either of two outcome measures.


Subject(s)
Bacterial Vaccines/immunology , Coxiella burnetii , Q Fever/prevention & control , Administration, Intranasal , Animals , Antigens/chemistry , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Guinea Pigs , Injections, Intradermal , Injections, Subcutaneous , Skin , Treatment Outcome , Vaccination
14.
Cancer Immunol Res ; 6(5): 539-551, 2018 05.
Article in English | MEDLINE | ID: mdl-29511032

ABSTRACT

AMD3100 (plerixafor), a CXCR4 antagonist, has been demonstrated to suppress tumor growth and modulate intratumoral T-cell trafficking. However, the effect of AMD3100 on immunomodulation remains elusive. Here, we explored immunomodulation and antitumor efficacy of AMD3100 in combination with a previously developed mesothelin-targeted, immune-activating fusion protein, VIC-008, in two syngeneic, orthotopic models of malignant mesothelioma in immunocompetent mice. We showed that combination therapy significantly suppressed tumor growth and prolonged animal survival in two mouse models. Tumor control and survival benefit were associated with enhanced antitumor immunity. VIC-008 augmented mesothelin-specific CD8+ T-cell responses in the spleen and lymph nodes and facilitated intratumoral lymphocytic infiltration. However, VIC-008 treatment was associated with increased programmed cell death protein-1 (PD-1) expression on intratumoral CD8+ T cells, likely due to high CXCL12 in the tumor microenvironment. AMD3100 alone and in combination with VIC-008 modulated immunosuppression in tumors and the immune system through suppression of PD-1 expression on CD8+ T cells and conversion of regulatory T cells (Tregs) into CD4+CD25-Foxp3+IL2+CD40L+ helper-like cells. In mechanistic studies, we demonstrated that AMD3100-driven Treg reprogramming required T cell receptor (TCR) activation and was associated with loss of PTEN due to oxidative inactivation. The combination of VIC-008 augmentation of tumor-specific CD8+ T-cell responses with AMD3100 abrogation of immunosuppression conferred significant benefits for tumor control and animal survival. These data provide new mechanistic insight into AMD3100-mediated immunomodulation and highlight the enhanced antitumor effect of AMD3100 in combination with a tumor antigen-targeted therapy in mouse malignant mesothelioma, which could be clinically relevant to patients with this difficult-to-treat disease. Cancer Immunol Res; 6(5); 539-51. ©2018 AACR.


Subject(s)
Antigens, Bacterial/immunology , Cancer Vaccines/therapeutic use , GPI-Linked Proteins/immunology , HSP70 Heat-Shock Proteins/immunology , Heterocyclic Compounds/pharmacology , Immunomodulation/drug effects , Mesothelioma/therapy , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/therapeutic use , Benzylamines , CHO Cells , Cancer Vaccines/immunology , Cell Line, Tumor , Combined Modality Therapy , Cricetinae , Cricetulus , Cyclams , Drug Synergism , Female , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/therapeutic use , Heterocyclic Compounds/administration & dosage , Mesothelin , Mesothelioma/immunology , Mesothelioma/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use
15.
FASEB J ; 32(1): 5-15, 2018 01.
Article in English | MEDLINE | ID: mdl-29092906

ABSTRACT

Mass cytometry enables highly multiplexed profiling of cellular immune responses in limited-volume samples, advancing prospects of a new era of systems immunology. The capabilities of mass cytometry offer expanded potential for deciphering immune responses to infectious diseases and to vaccines. Several studies have used mass cytometry to profile protective immune responses, both postinfection and postvaccination, although no vaccine-development program has yet systematically employed the technology from the outset to inform both candidate design and clinical evaluation. In this article, we review published mass cytometry studies relevant to vaccine development, briefly compare immune profiling by mass cytometry to other systems-level technologies, and discuss some general considerations for deploying mass cytometry in the context of vaccine development.-Reeves, P. M., Sluder, A. E., Raju Paul, S., Scholzen, A., Kashiwagi, S., Poznansky, M. C. Application and utility of mass cytometry in vaccine development.


Subject(s)
Flow Cytometry/methods , Vaccines/immunology , Animals , Antibodies , Data Interpretation, Statistical , Drug Discovery , Flow Cytometry/statistics & numerical data , Fluorescent Dyes , Gene Expression Profiling , Humans , Immunity, Cellular , Influenza Vaccines/immunology , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis , Systems Biology
16.
Hum Vaccin Immunother ; 13(12): 2977-2981, 2017 12 02.
Article in English | MEDLINE | ID: mdl-28933682

ABSTRACT

Development of vaccines that are both safe and effective remains a costly and time-consuming challenge. To accelerate the pace of development and improve the efficacy and safety of candidate vaccines for both existing and emerging infectious agents, we have used a distributed development approach. This features the managed integration of individual expert groups having the requisite vaccine platforms, pre-clinical models, assays, skills and knowledge pertinent to a specific pathogen into a single, end-to-end development team capable of producing a new vaccine tailored to that particular agent. Distributed development focuses on integrating existing effort across multiple institutions rather than developing new capabilities or consolidating resources within an individual organization. Previously we have used the distributed development strategy to generate vaccine candidates for emerging viral diseases. Coxiella burnetii is a highly infectious and resilient bacterium and the causative agent of Q fever. Treatment for Q fever can require months of antibiotics. The current vaccine for Q-fever is only approved in Australia and requires prescreening due to the potential for severe reactogenicity in previously exposed individuals. Here we discuss Q-VaxCelerate, a distributed development consortium for the development of a new vaccine to prevent Q fever.


Subject(s)
Bacterial Vaccines/immunology , Bacterial Vaccines/isolation & purification , Coxiella burnetii/immunology , Drug Discovery/organization & administration , Q Fever/prevention & control , Humans
17.
Wound Repair Regen ; 25(5): 774-791, 2017 09.
Article in English | MEDLINE | ID: mdl-28922523

ABSTRACT

Chronic wounds affect 12-15% of patients with diabetes and are associated with a drastic decrease in their quality of life. Here, we demonstrate that purified mature naive B220+ /CD19+ /IgM+ /IgD+ B cells improve healing of acute and diabetic murine wounds after a single topical application. B cell treatment significantly accelerated acute wound closure by 2-3 days in wild-type mice and 5-6 days in obese diabetic mice. The treatment led to full closure in 43% of chronic diabetic wounds, as compared to only 5% in saline-treated controls. Applying equivalent numbers of T cells or disrupted B cells failed to reproduce these effects, indicating that live B cells mediated pro-healing responses. Topically applied B cell treatment was associated with significantly reduced scar size, increased collagen deposition and maturation, enhanced angiogenesis, and increased nerve growth into and under the healing wound. ß-III tubulin+ nerve endings in scars of wounds treated acutely with B cells showed increased relative expression of growth-associated protein 43. The improved healing associated with B cell treatment was supported by significantly increased fibroblast proliferation and decreased apoptosis in the wound bed and edges, altered kinetics of neutrophil infiltration, as well as an increase in TGF-ß and a significant reduction in MMP2 expression in wound granulation tissue. Our findings indicate that the timeline and efficacy of wound healing can be experimentally manipulated through the direct application of mature, naive B cells, which effectively modify the balance of mature immune cell populations within the wound microenvironment and accelerate the healing process.


Subject(s)
B-Lymphocytes , Cell- and Tissue-Based Therapy/methods , Diabetes Mellitus, Experimental/complications , Skin Diseases/therapy , Skin/pathology , Wound Healing/immunology , Acute Disease , Animals , Biopsy , Cell Survival , Chronic Disease , Flow Cytometry , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Skin/immunology , Skin Diseases/etiology , Skin Diseases/pathology
18.
Dev Biol ; 313(2): 767-86, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18096150

ABSTRACT

The gene nhr-6 encodes the Caenorhabditis elegans ortholog of the NR4A nuclear receptor. We determined the biological functions of NHR-6 through the isolation and characterization of a deletion allele of nhr-6, lg6001. We demonstrate that nhr-6 has an essential role in the development of the C. elegans somatic gonad. Specifically, nhr-6 is required for the development of the hermaphrodite spermatheca, a somatic gonad organ that serves as the site of sperm storage and oocyte fertilization. Using a variety of spermatheca cell markers, we have determined that loss of nhr-6 function causes severe morphological defects in the spermatheca and associated spermathecal valves. This appears to be due to specific requirements for nhr-6 in regulating cell proliferation and cell differentiation during development of these structures. The improper development of these structures in nhr-6(lg6001) mutants leads to defects in ovulation and significantly reduced fecundity of C. elegans hermaphrodites. The phenotypes of nhr-6(lg6001) mutants are consistent with a role for nhr-6 in organogenesis, similar to the functions of its mammalian homologs.


Subject(s)
Caenorhabditis elegans/embryology , Genes, Helminth , Organogenesis , Receptors, Cytoplasmic and Nuclear/physiology , Alleles , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/physiology , Cell Differentiation , Cell Proliferation , Crosses, Genetic , Disorders of Sex Development , Embryo, Nonmammalian , Female , Fertilization/physiology , Gene Deletion , Genes, Reporter , Gonads/cytology , Green Fluorescent Proteins/metabolism , Immunohistochemistry , Male , Mutation , Oocytes/physiology , Organ Size , Ovulation , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Spermatozoa/physiology
19.
Trends Parasitol ; 21(3): 97-100, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15734653

ABSTRACT

Human filarial nematodes cause river blindness and lymphatic filariasis, both of which are diseases that produce considerable morbidity. Control of these diseases relies on drug treatments that are ineffective against macrofilariae and are threatened by the development of resistance. New validated drug targets are required to allow development of new classes of antifilarial drugs. To identify and validate potential new drug targets, we propose a collaborative research strategy utilizing bioinformatic filters and assessment of gene function by RNA interference in Caenorhabditis elegans and Brugia malayi.


Subject(s)
Brugia malayi/genetics , Caenorhabditis elegans/genetics , Filariasis/drug therapy , Filaricides/therapeutic use , RNA Interference , Animals , Genes, Helminth , Humans
20.
Dev Biol ; 266(2): 399-416, 2004 Feb 15.
Article in English | MEDLINE | ID: mdl-14738886

ABSTRACT

The Caenorhabditis elegans genome encodes 284 nuclear receptor (NR) genes. Among these 284 NR genes are 15 genes conserved among the Metazoa. Here, we analyze the expression and function of eight heretofore uncharacterized conserved C. elegans NR genes. Reporter gene analysis demonstrates that these genes have distinct expression patterns and that a majority of the C. elegans cell types express a conserved NR gene. RNA interference with NR gene function resulted in visible phenotypes for three of the genes, revealing functions in various processes during postembryonic development. Five of the conserved NR genes are orthologs of NR genes that function during molting and metamorphosis in insects. Functional studies confirm a role for most of these 'ecdysone cascade' NR orthologs during the continuous growth and dauer molts. Transcript levels for these genes fluctuate in a reiterated pattern during the molting cycles, reminiscent of the expression hierarchy observed in the insect ecdysone response. Together, these analyses provide a foundation for further dissecting the role of NRs in nematode development as well as for evaluating conservation of NR functions among the Metazoa.


Subject(s)
Caenorhabditis elegans/genetics , Genes, Helminth , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/physiology , Ecdysone/metabolism , Genes, Reporter , Green Fluorescent Proteins , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Molting/physiology , Phenotype , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...