Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Neuroimaging ; 30(6): 779-785, 2020 11.
Article in English | MEDLINE | ID: mdl-32857906

ABSTRACT

BACKGROUND AND PURPOSE: Aneurysm size and neck measurements are important for treatment decisions. The introduction of 7T magnetic resonance angiography (MRA) led to new possibilities assessing aneurysm morphology and flow due to the higher signal-to-noise ratio. However, it is unknown if the size measurements on 7T MRA are similar to those on the standard 3T MRA. This study aimed to compare aneurysm size measurements between 7T and 3T MRA. METHODS: We included 18 patients with 22 aneurysms who underwent both 3T and 7T MRA. Three acquisition protocols were compared: 3T time of flight (TOF), 7T TOF, and 7T contrast-enhanced MRA. Each aneurysm on each protocol was measured by at least two experienced neuroradiologists. Subsequently, the differences were evaluated using scatterplots and the intraclass correlation coefficients (ICC) of agreement. RESULTS: There was a good agreement among the neuroradiologists for the height and width measurements (mean ICC: .78-.93); the neck measurements showed a moderate agreement with a mean ICC of .57-.72. Between the MR acquisition protocols, there was a high agreement for all measurements with a mean ICC of .81-.96. Measurement differences between acquisition protocols (0-2.9 mm) were in the range of the differences between the neuroradiologists (0-3.6 mm). CONCLUSION: Our study showed that 7T MRA, both nonenhanced and contrast-enhanced, has a high agreement in aneurysm size measurements compared to 3T. This suggests that 7T is useful for reliable aneurysm size assessment.


Subject(s)
Angiography, Digital Subtraction/methods , Intracranial Aneurysm/diagnostic imaging , Magnetic Resonance Angiography/methods , Aged , Female , Humans , Intracranial Aneurysm/therapy , Male , Middle Aged
2.
J Endovasc Ther ; 24(5): 677-687, 2017 10.
Article in English | MEDLINE | ID: mdl-28689483

ABSTRACT

PURPOSE: To examine the influence of device positioning and infrarenal neck diameter on flow patterns in the Nellix endovascular aneurysm sealing (EVAS) system. METHODS: The transition of the aortic flow lumen into two 10-mm-diameter stents after EVAS creates a mismatched area. Flow recirculation may affect local wall shear stress (WSS) profiles and residence time associated with atherosclerosis and thrombosis. To examine these issues, 7 abdominal aortic aneurysm flow phantoms were created, including 3 unstented controls and 3 stented models with infrarenal neck diameters of 24, 28, and 32 mm. Stents were positioned within the instructions for use (IFU). Another 28-mm model was created to evaluate lower positioning of the stents outside the IFU (28-mm LP). Flow was visualized using optical particle imaging velocimetry (PIV) and quantified by time-averaged WSS (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) in the aorta at the anteroposterior (AP) midplane, lateral midplane, and renal artery AP midplane levels. RESULTS: Flow in the aorta AP midplane was similar in all models. Vortices were observed in the stented models in the lateral midplane near the anterior and posterior walls. In the 32-mm IFU and 28-mm LP models, a steady state of vortices appeared, with varying location during a cycle. In all models, a low TAWSS (<10-2 Pa) was observed at the anterior wall of the aorta with peak OSI of 0.5 and peak RRT of 104 Pa-1. This region was more proximally located in the stented models. The 24- and 28-mm IFU models showed flow with a higher velocity at the renal artery inflow compared to controls. TAWSS in the renal artery was lower near the orifice in all models, with the largest area in the 24-mm IFU model. OSI and RRT in the renal artery were near zero for all models. CONCLUSION: EVAS enhances vorticity proximal to the seal zone, especially with lower positioning of the device and in larger neck diameters. Endobags just below the renal artery affect the flow profile in a minor area of this artery in 24- and 28-mm necks, while lower stent positioning does not influence the renal artery flow profile.


Subject(s)
Aorta, Abdominal/surgery , Aortic Aneurysm, Abdominal/surgery , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis , Endovascular Procedures/instrumentation , Renal Artery/surgery , Stents , Aorta, Abdominal/diagnostic imaging , Aorta, Abdominal/physiopathology , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/physiopathology , Blood Flow Velocity , Case-Control Studies , Hemodynamics , Humans , Models, Anatomic , Prosthesis Design , Renal Artery/diagnostic imaging , Renal Artery/physiopathology , Renal Circulation
3.
J Nucl Med ; 51(4): 610-7, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20237025

ABSTRACT

UNLABELLED: The positron emitters (18)F, (68)Ga, (124)I, and (89)Zr are all relevant in small-animal PET. Each of these radionuclides has different positron energies and ranges and a different fraction of single photons emitted. Average positron ranges larger than the intrinsic spatial resolution of the scanner (for (124)I and (68)Ga) will deteriorate the effective spatial resolution and activity recovery coefficient (RC) for small lesions or phantom structures. The presence of single photons (for (124)I and (89)Zr) could increase image noise and spillover ratios (SORs). METHODS: Image noise, expressed as percentage SD in a uniform region (%SD), RC, and SOR (in air and water) were determined using the NEMA NU 4 small-animal image-quality phantom filled with 3.7 MBq of total activity of (18)F, (68)Ga, (124)I, or (89)Zr. Filtered backprojection (FBP), ordered-subset expectation maximization in 2 dimensions, and maximum a posteriori (MAP) reconstructions were compared. In addition to the NEMA NU 4 image-quality parameters, spatial resolutions were determined using small glass capillaries filled with these radionuclides in a water environment. RESULTS: The %SD for (18)F, (68)Ga, (124)I, and (89)Zr using FBP was 6.27, 6.40, 6.74, and 5.83, respectively. The respective RCs were 0.21, 0.11, 0.12, and 0.19 for the 1-mm-diameter rod and 0.97, 0.65, 0.64, and 0.88 for the 5-mm-diameter rod. SORs in air were 0.01, 0.03, 0.04, and 0.01, respectively, and in water 0.02, 0.10, 0.13, and 0.02. Other reconstruction algorithms gave similar differences between the radionuclides. MAP produced the highest RCs. For the glass capillaries using FBP, the full widths at half maximum for (18)F, (68)Ga, (124)I, and (89)Zr were 1.81, 2.46, 2.38, and 1.99 mm, respectively. The corresponding full widths at tenth maximum were 3.57, 6.52, 5.87, and 4.01 mm. CONCLUSION: With the intrinsic spatial resolution (approximately 1.5 mm) of this latest-generation small-animal PET scanner, the finite positron range has become the limiting factor for the overall spatial resolution and activity recovery in small structures imaged with (124)I and (68)Ga. The presence of single photons had only a limited effect on the image noise. MAP, as compared with the other reconstruction algorithms, increased RC and decreased %SD and SOR.


Subject(s)
Phantoms, Imaging , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/standards , Animals , Image Processing, Computer-Assisted , Quality Control , Radioisotopes
SELECTION OF CITATIONS
SEARCH DETAIL