Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 02 08.
Article in English | MEDLINE | ID: mdl-35133277

ABSTRACT

Adenylosuccinate lyase (ADSL) functions in de novo purine synthesis (DNPS) and the purine nucleotide cycle. ADSL deficiency (ADSLD) causes numerous neurodevelopmental pathologies, including microcephaly and autism spectrum disorder. ADSLD patients have normal serum purine nucleotide levels but exhibit accumulation of dephosphorylated ADSL substrates, S-Ado, and SAICAr, the latter being implicated in neurotoxic effects through unknown mechanisms. We examined the phenotypic effects of ADSL depletion in human cells and their relation to phenotypic outcomes. Using specific interventions to compensate for reduced purine levels or modulate SAICAr accumulation, we found that diminished AMP levels resulted in increased DNA damage signaling and cell cycle delays, while primary ciliogenesis was impaired specifically by loss of ADSL or administration of SAICAr. ADSL-deficient chicken and zebrafish embryos displayed impaired neurogenesis and microcephaly. Neuroprogenitor attrition in zebrafish embryos was rescued by pharmacological inhibition of DNPS, but not increased nucleotide concentration. Zebrafish also displayed phenotypes commonly linked to ciliopathies. Our results suggest that both reduced purine levels and impaired DNPS contribute to neurodevelopmental pathology in ADSLD and that defective ciliogenesis may influence the ADSLD phenotypic spectrum.


Subject(s)
Adenylosuccinate Lyase/deficiency , Adenylosuccinate Lyase/metabolism , Autistic Disorder/metabolism , Neurogenesis , Purine-Pyrimidine Metabolism, Inborn Errors/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/metabolism , Animals , Autism Spectrum Disorder/metabolism , Cell Cycle , Cell Cycle Proteins/metabolism , Cell Line , Chickens/metabolism , Ciliopathies/metabolism , DNA Damage , Humans , Microcephaly/metabolism , Microtubule-Associated Proteins/metabolism , Phenotype , Phosphoproteins/metabolism , Purines/metabolism , Ribonucleotides/metabolism , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...