Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
ACS Appl Bio Mater ; 6(11): 4714-4727, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37863908

ABSTRACT

Designing effective drug nanocarriers that are easy to synthesize, robust, and nontoxic is a significant challenge in nanomedicine. Polyamine-multivalent molecule nanocomplexes are promising drug carriers due to their simple and all-aqueous manufacturing process. However, these systems can present issues of colloidal instability over time and cellular toxicity due to the cationic polymer. In this study, we finely modulate the formation parameters of poly(allylamine-tripolyphosphate) complexes to jointly optimize the robustness and safety. Polyallylamine was ionically assembled with tripolyphosphate anions to form liquid-like nanocomplexes with a size of around 200 nm and a zeta potential of -30 mV. We found that nanocomplexes exhibit tremendous long-term stability (9 months of storage) in colloidal dispersion and that they are suitable as protein-loading agents. Moreover, the formation of nanocomplexes induced by tripolyphosphate anions produces a switch-off in the toxicity of the system by altering the overall charge from positive to negative. In addition, we demonstrate that nanocomplexes can be internalized by bone-marrow-derived macrophage cells. Altogether, these nanocomplexes have attractive and promising properties as delivery nanoplatforms for potential therapies based on the immune system activation.


Subject(s)
Allylamine , Polyphosphates , Drug Carriers , Polymers
2.
Free Radic Res ; 56(1): 28-39, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35068298

ABSTRACT

This work aimed to evaluate the effect of carbonylation induced by tetracyclines, ß-lactams, fluoroquinolones, and pyrethroids in caseins of bovine origin on their immunoreactivity and allergenicity. Using a spectrophotometric method, ELISA, dot-blot, and an IgE-mediated milk allergy mouse model, we confirmed that antibiotics and pesticides at their maximum residue limit, promoted the in vitro carbonylation of caseins (among 5.0 ± 0.01 and 67.5 ± 0.70 nmol of carbonyl/mg of protein); furthermore, carbonylations greater than 19 nmol significantly increase the in vitro IgE immunoreactivity of caseins (average OD among 0.63-1.50) regarding the negative control (average OD: 0.56). On the other hand, sensitized mice exposed to oxidized caseins showed increased clinical scores (2-5), positive skin tests, and footpad swelling (0.28-0.59 mm) compared to the negative control (1-2; negative skin tests; 0.1 mm, respectively), denoting increased allergenicity. These results suggest that casein carbonylation increases their IgE immunoreactivity and allergenicity, a fact that could be explained by the resistance to the digestion promoted by carbonylation and by conformational changes in the random coil casein structure, which can expose cryptic epitopes or neoepitopes.


Subject(s)
Caseins , Pesticide Residues , Allergens/metabolism , Animals , Anti-Bacterial Agents , Caseins/metabolism , Cattle , Immunoglobulin E , Mice
3.
Environ Pollut ; 292(Pt B): 118351, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34637830

ABSTRACT

Particulate matter exposure and related chemical changes in drinking water have been associated with health problems and inflammatory disorders. This study aimed to examine the effect of orally administered ash-water dilution on the gut of mice under normal and inflammatory conditions. Balb/c mice received ash-released soluble and dust-suspended components in the drinking water for 14 days. On day 7, animals were intrarectally instilled with TNBS in ethanol or flagellin from Salmonella typhimurium in PBS. At sacrifice, colon segments were collected and histologic damage, mRNA expression and cytokine levels in tissue were evaluated. In addition, these parameters were also evaluated in IL-10 null mice. We found that mice that received 5% w. fine-ash dilution in the drinking water worsened colitis signs. Weight loss, shortening of the colon, tissue edema with mucosa and submucosa cell infiltration and production of pro-inflammatory cytokines and chemokines were enhanced compared to control mice. A more pronounced inflammation was observed in IL-10 null mice. In addition, markers of NLRP3-dependent inflammasome activation were found in animals exposed to ash. In conclusion, ingestion of contaminated water with dust-suspended particulate matter enhanced the inflammatory response in the gut, probably due to alteration of the gut barrier and promoting an intense contact with the luminal content. This study critically appraises the response for fine particulate matter in uncommon illnesses reported for volcanic ash pollution. We suggest actions to enable better prediction and assessment the health impacts of volcanic eruptions.


Subject(s)
Colitis , Volcanic Eruptions , Animals , Colitis/chemically induced , Inflammation/chemically induced , Mice , Particulate Matter/toxicity
4.
Front Immunol ; 12: 641597, 2021.
Article in English | MEDLINE | ID: mdl-33995359

ABSTRACT

The intestinal mucosa is lined by epithelial cells, which are key cells to sustain gut homeostasis. Food allergy is an immune-mediated adverse reaction to food, likely due to defective regulatory circuits. Tsukamurella inchonensis is a non-pathogenic bacterium with immunomodulatory properties. We hypothesize that the anti-inflammatory effect of dead T. inchonensis on activated epithelial cells modulates milk allergy through the restoration of tolerance in a mouse model. Epithelial cells (Caco-2 and enterocytes from mouse gut) and macrophages were stimulated with T. inchonensis and induction of luciferase under the NF-κB promoter, ROS and cytokines production were studied. Balb/c mice were mucosally sensitized with cow´s milk proteins plus cholera toxin and orally challenged with the allergen to evidence hypersensitivity symptoms. After that, mice were orally administered with heat-killed T. inchonensis as treatment and then challenged with the allergen. The therapeutic efficacy was in vivo (clinical score and cutaneous test) and in vitro (serum specific antibodies and cytokines-ELISA, and cell analysis-flow cytometry) evaluated. Heat-killed T. inchonensis modulated the induction of pro-inflammatory chemokines, with an increase in anti-inflammatory cytokines by intestinal epithelial cells and by macrophages with decreased OX40L expression. In vivo, oral administration of T. inchonensis increased the frequency of lamina propria CD4+CD25+FoxP3+ T cells, and clinical signs were lower in T. inchonensis-treated mice compared with milk-sensitized animals. In vivo depletion of Tregs (anti-CD25) abrogated T. inchonensis immunomodulation. In conclusion, these bacteria suppressed the intestinal inflammatory immune response to reverse food allergy.


Subject(s)
Actinobacteria/immunology , Immune Tolerance/immunology , Intestinal Mucosa/immunology , Milk Hypersensitivity/immunology , Animals , Caco-2 Cells , Humans , Interleukin-10/immunology , Mice , Mice, Inbred BALB C , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology
5.
Food Chem ; 346: 128926, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33484948

ABSTRACT

Food allergy is on the rise, and preventive/therapeutic procedures are needed. We explored a preventive protocol for milk allergy with the oral administration of a Gly-m-Bd-30K soy-derived peptide that contains cross-reactive epitopes with bovine caseins. B/T-cross-reactive epitopes were mapped using milk-specific human sera and monoclonal antibodies on overlapping and recombinant peptides of Gly-m-Bd-30K by SPOT and cell proliferation assays. Bioinformatics tools were used to characterize epitopes on the 3D-modelled molecule, and to predict the binding to HLA alleles. The peptide was orally administrated to mice that were then IgE-sensitized to milk proteins. Immunodominant B-epitopes were mainly located on the surface of the Nt-fragment. The use of a soy-peptide-containing an immunodominant cross-reactive T-epitope, along with a single B epitope, prevents IgE-mediated milk sensitization through the induction of Th1-mediated immunity and induction of blocking IgG. The use of a safe soy-peptide may represent a promising alternative for preventing milk allergy.


Subject(s)
Cross Reactions , Milk Hypersensitivity/prevention & control , Peptide Fragments/administration & dosage , Peptide Fragments/immunology , Soybean Proteins/immunology , Administration, Oral , Animals , Cattle , Epitopes/immunology , Humans , Mice , Milk Hypersensitivity/immunology
6.
Clin Exp Allergy ; 50(8): 954-963, 2020 08.
Article in English | MEDLINE | ID: mdl-32501552

ABSTRACT

BACKGROUND: IgE-mediated food allergy remains a significant and growing worldwide problem. Sublingual immunotherapy (SLIT) shows an excellent safety profile for food allergy, but the clinical efficacy needs to be improved. This study assessed the effects of the Toll-like receptor 4 agonist outer membrane protein (Omp) 16 from Brucella abortus combined with cow´s milk proteins (CMP) through the sublingual route to modulate cow's milk allergy in an experimental model. METHODS: Mice sensitized with cholera toxin and CMP were orally challenged with the allergen to elicit hypersensitivity reactions. Then, mice were treated with a very low amount of CMP along with Omp16 as a mucosal adjuvant, and finally, animals were re-exposed to CMP. Systemic and mucosal immune parameters were assessed in vivo and in vitro. RESULTS: We found that the sublingual administration of Omp16 + CMP induced a buccal Th1 immune response that modulated the intestinal allergic response with the suppression of symptoms, reduction of IgE and IL-5, and up-regulation of IgG2a and IFN-γ. The adoptive transfer of submandibular IFN-γ-producing α4ß7+ CD4+ and CD8+ cells conferred protection against allergic sensitization. The use of Omp16 + CMP promoted enhanced protection compared to CMP alone. CONCLUSION: In conclusion, Omp16 represents a promising mucosal adjuvant that can be used to improve the clinical and immune efficacy of SLIT for food allergy.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Allergens/administration & dosage , Bacterial Outer Membrane Proteins/administration & dosage , Cell Cycle Proteins/administration & dosage , Immunity, Mucosal/drug effects , Intestinal Mucosa/drug effects , Milk Hypersensitivity/therapy , Milk Proteins/administration & dosage , Sublingual Immunotherapy , T-Lymphocyte Subsets/drug effects , Administration, Sublingual , Adoptive Transfer , Allergens/immunology , Animals , Bacterial Outer Membrane Proteins/immunology , Cell Cycle Proteins/immunology , Cells, Cultured , Disease Models, Animal , Female , Immunoglobulin E/metabolism , Immunoglobulin G/metabolism , Interferon-gamma/metabolism , Interleukin-5/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Mice, Inbred BALB C , Milk Hypersensitivity/immunology , Milk Hypersensitivity/metabolism , Milk Proteins/immunology , Mouth Mucosa/drug effects , Mouth Mucosa/immunology , Mouth Mucosa/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/transplantation , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism
7.
Sci Rep ; 10(1): 8259, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427877

ABSTRACT

Psoriasis (PS) is a chronic skin inflammation. Up to 30% of the patients with PS develop psoriatic arthritis (PsA), a condition characterized by inflammatory arthritis that affects joints or entheses. Although there is mounting evidence for a critical role of interleukin-23 (IL-23) signaling in the pathogenesis of both PS and PsA, it remains unclear whether IL-23-induced skin inflammation drives joint disease. Here, we show that mice expressing increased levels of IL-23 in the skin (K23 mice) develop a PS-like disease that is characterized by acanthosis, parakeratosis, hyperkeratosis, and inflammatory infiltrates in the dermis. Skin disease preceded development of PsA, including enthesitis, dactylitis, and bone destruction. The development of enthesitis and dactylitis was not due to high circulating levels of IL-23, as transgenic animals and controls had similar levels of this cytokine in circulation. IL-22, a downstream cytokine of IL-23, was highly increased in the serum of K23 mice. Although IL-22 deficiency did not affect skin disease development, IL-22 deficiency aggravated the PsA-like disease in K23 mice. Our results demonstrate a central role for skin expressed IL-23 in the initiation of PS and on pathogenic processes leading to PsA.


Subject(s)
Arthritis, Psoriatic/genetics , Interleukin-23/genetics , Psoriasis/genetics , Skin/immunology , Animals , Arthritis, Psoriatic/immunology , Female , Humans , Interleukin-23/immunology , Interleukins/genetics , Interleukins/immunology , Male , Mice , Psoriasis/immunology , Interleukin-22
8.
Gastroenterology ; 157(6): 1572-1583.e8, 2019 12.
Article in English | MEDLINE | ID: mdl-31470007

ABSTRACT

BACKGROUND & AIMS: Transgenic mice (HBUS) that express the epidermal growth factor receptor (EGFR) ligand HBEGF (heparin-binding epidermal growth factor-like growth factor) and a constitutively active G protein-coupled receptor (US28) in intestinal epithelial cells develop serrated polyps in the cecum. Development of serrated polyps depends on the composition of the gut microbiota and is associated with bacterial invasion of the lamina propria, accompanied by induction of inflammation and up-regulation of interleukin 1 beta (IL1B) and matrix metalloproteinase (MMP) 3 in the cecum. We investigated the mechanisms by which these changes contribute to development of serrated polyps. METHODS: We performed studies with C57BL/6 (control) and HBUS mice. To accelerate polyp development, we increased the exposure of the bacteria to the lamina propria by injecting HBUS mice with diphtheria toxin, which binds transgenic HBEGF expressed by the epithelial cells and causes apoptosis. Mice were given injections of IL1B-neutralizing antibody and the MMP inhibitor N-isobutyl-N-(4-methoxyphenylsulfonyl)glycyl hydroxamic acid. Intestinal tissues were collected from mice and analyzed by histology, reverse-transcription polymerase chain reaction, enzyme-linked immunosorbent assay, immunofluorescence, and flow cytometry. We examined fibroblast subsets in polyps using single-cell RNA sequencing. RESULTS: Administration of diphtheria toxin to HBUS mice accelerated development of serrated polyps (95% of treated mice developed polyps before 100 days of age, compared with 53% given vehicle). IL1B stimulated subsets of platelet-derived growth factor receptor alpha+ (PDGRFA+) fibroblasts isolated from cecum, resulting in increased expression of MMP3. Neutralizing antibodies against IL1B or administration of the MMP inhibitor reduced the number of serrated polyps that formed in the HBUS mice. Single-cell RNA sequencing analysis showed subsets of fibroblasts in serrated polyps that express genes that regulate matrix fibroblasts and inflammation. CONCLUSIONS: In studies of mice, we found that barrier breakdown and expression of inflammatory factors contribute to development of serrated polyps. Subsets of cecal PDGFRA+ fibroblasts are activated by release of IL1B from myeloid cells during the early stages of serrated polyp development. MMP3 produced by PDGFRA+ fibroblasts is important for serrated polyp development. Our findings confirm the functions of previously identified serrated polyp-associated molecules and indicate roles for immune and stromal cells in serrated polyp development.


Subject(s)
Colonic Polyps/immunology , ErbB Receptors/metabolism , Interleukin-1beta/metabolism , Intestinal Mucosa/pathology , Matrix Metalloproteinase 3/metabolism , Animals , Apoptosis/immunology , Cecum/cytology , Cecum/immunology , Cecum/pathology , Diphtheria Toxin/administration & dosage , Diphtheria Toxin/immunology , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/pathology , ErbB Receptors/antagonists & inhibitors , Fibroblasts/immunology , Fibroblasts/metabolism , Gefitinib/pharmacology , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/metabolism , Humans , Hydroxamic Acids/pharmacology , Interleukin-1beta/immunology , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Matrix Metalloproteinase 3/immunology , Matrix Metalloproteinase Inhibitors/pharmacology , Mice , Mice, Transgenic , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Sulfonamides/pharmacology
9.
Channels (Austin) ; 12(1): 58-64, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28514187

ABSTRACT

An established characteristic of neoplastic cells is their metabolic reprogramming, known as the Warburg effect, with greater reliance on energetically less efficient pathways (such as glycolysis and pentose phosphate shunt) compared with oxidative phosphorylation. This results in an overproduction of acidic species that must be extruded to maintain intracellular homeostasis. We recently described that blocking the proton currents in leukemic cells mediated by Hv1 ion channels triggers a marked intracellular acidification and apoptosis induction. Moreover, histamine H1-receptor antagonists were found to induce apoptosis in tumoral cells but the mechanism is still unclear. By using Jurkat T cells, we now show how diphenhydramine inhibits Hv1 mediated currents, inducing a drop in intracellular pH and cellular viability. This provides evidence of a new target structure responsible of the known pro-apoptotic action of antihistaminic drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Diphenhydramine/pharmacology , Ion Channels/antagonists & inhibitors , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Diphenhydramine/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Ion Channels/metabolism , Jurkat Cells , Structure-Activity Relationship
10.
Pflugers Arch ; 469(2): 251-261, 2017 02.
Article in English | MEDLINE | ID: mdl-28013412

ABSTRACT

Cellular energetic deregulation is widely known to produce an overproduction of acidic species in cancer cells. This acid overload must be counterbalanced with a high rate of H+ extrusion to maintain cell viability. In this sense, many H+ transporters have been reported to be crucial for cell survival and proposed as antineoplastic target. By the way, voltage-gated proton channels (Hv1) mediate highly selective H+ outward currents, capable to compensate acid burden in brief periods of time. This structure is canonically described acting as NADPH oxidase counterbalance in reactive oxygen species production. In this work, we show, for the first time in a oncohematologic cell line, that inhibition of Hv1 channels by Zn2+ and the more selective blocker 2-(6-chloro-1H-benzimidazol-2-yl)guanidine (ClGBI) progressively decreases intracellular pH in resting conditions. This acidification is evident minutes after blockade and progresses under prolonged exposure (2, 17, and 48 h), and we firstly demonstrate that this is followed by cell death through apoptosis (annexin V binding). Altogether, these results contribute strong evidence that this channel might be a new therapeutic target in cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Death/drug effects , Ion Channels/antagonists & inhibitors , T-Lymphocytes/drug effects , Cell Line , Cell Survival/drug effects , Humans , Hydrogen-Ion Concentration/drug effects , Ion Channel Gating/drug effects , Ion Channels/metabolism , Jurkat Cells , NADPH Oxidases/metabolism , Protons , Reactive Oxygen Species/metabolism , T-Lymphocytes/metabolism , Zinc/pharmacology
11.
J Cell Physiol ; 232(9): 2489-2496, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27626762

ABSTRACT

Intestinal epithelial cell culture is important for biological, functional, and immunological studies. Since enterocytes have a short in vivo life span due to anoikis, we aimed to establish a novel and reproducible method to prolong the survival of mouse and human cells. Cells were isolated following a standard procedure, and cultured on ordered-cow's collagen membranes. A prolonged cell life span was achieved; cells covered the complete surface of bio-membranes and showed a classical enterocyte morphology with high expression of enzymes supporting the possibility of cryopreservation. Apoptosis was dramatically reduced and cultured enterocytes expressed cytokeratin and LGR5 (low frequency). Cells exposed to LPS or flagellin showed the induction of TLR4 and TLR5 expression and a functional phenotype upon exposure to the probiotic Bifidobacterium bifidum or the pathogenic Clostridium difficile. The secretion of the homeostatic (IL-25 and TSLP), inhibitory (IL-10 and TGF-ß), or pro-inflammatory mediators (IL-1ß and TNF) were induced. In conclusion, this novel protocol using cow's collagen-ordered membrane provides a simple and reproducible method to maintain intestinal epithelial cells functional for cell-microorganism interaction studies and stem cell expansion. J. Cell. Physiol. 232: 2489-2496, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Collagen/metabolism , Enterocytes/physiology , Membranes, Artificial , Primary Cell Culture/methods , Animals , Apoptosis , Bifidobacterium bifidum/physiology , Biomarkers/metabolism , Cell Survival , Cells, Cultured , Clostridioides difficile/physiology , Cytokines/metabolism , Enterocytes/enzymology , Enterocytes/microbiology , Enzymes/metabolism , Female , Host-Pathogen Interactions , Humans , Inflammation Mediators , Keratins/metabolism , Male , Mice, 129 Strain , Middle Aged , Phenotype , Receptors, G-Protein-Coupled/metabolism , Time Factors , Toll-Like Receptors/metabolism
12.
Acta bioquím. clín. latinoam ; 50(1): 61-75, mar. 2016. ilus, graf
Article in Spanish | LILACS | ID: biblio-837591

ABSTRACT

Las enfermedades alérgicas son las inmunopatologías que con mayor prevalencia se presentan en el mundo. Pueden o no estar mediadas por anticuerpos IgE, sin embargo estas últimas son las que más intensamente se han estudiado por el riesgo que presentan para la vida del paciente. Si bien el único tratamiento que logra revertir estos mecanismos es la no exposición al alergeno, esto no siempre es posible. Por esta razón, y a partir del mayor conocimiento alcanzado del sistema inmune de mucosas junto al desarrollo de modelos animales de alergia, existe un marcado interés en la especialidad para el desarrollo de inmunoterapias que controlen y reviertan el estado de alergia. A partir de los ensayos pre-clínicos en animales y la aplicación de protocolos terapéuticos en ensayos clínicos, se han desarrollado terapias mucosales que logran inducir mecanismos de tolerancia específicos del alergeno, los cuales son capaces de revertir la sensibilización alérgica. Dado que el principal escollo siguen siendo las reacciones adversas inducidas durante el tratamiento, se requiere profundizar los estudios para desarrollar protocolos terapéuticos más seguros. En este punto la medicina traslacional encuentra un campo próspero para fortalecer las interacciones entre la ciencia básica, la aplicada y la clínica.


Allergic diseases are the most prevalent immunopathologies worldwide. Although different mechanisms -IgE-independent or IgE-dependent- can be involved in the immunopathogenesis, the latter are the most studied reactions since they can be life-threatening. Nowadays, allergen avoidance is the unique effective treatment for allergic patients. However, this is rather difficult to implement. For this reason, and based on the new insights into the mucosal immune system and the development of animal models of allergy, there is an increasing interest in developing novel therapies to control or reverse allergic disorders. Pre-clinical studies and clinical trials have been successful to prove that immunotherapies may accomplish mucosal mechanisms of allergen-specific tolerance, which are able to revoke the allergic sensitization. Since the main obstacle in these therapies still has adverse reactions induced during treatment, further studies are required to explore safe and effective therapeutic protocols. At this point, translational medicine is a flourishing field in the areas of basic science, applied science, and clinical research.


As doenças alérgicas são as imunopatologias mais prevalentes em todo o mundo. Embora possam estar mediadas ou não por anticorpos IgE, estas últimas são as reacções mais intensamente estudadas, devido ao risco que apresentam para a vida do paciente. Ainda que o único tratamento eficaz para reverter este mecanismos seja a não exposição dos pacientes ao alergeno, isto nem sempre é possível. Por este motivo, e com base nas novas perspectivas sobre o sistema imune de mucosas, junto com o desenvolvimento de modelos e para o animais de alergia, existe um interesse crescente na especialidade para o desenvolvimento de imunoterapias que controlem e revertam o estado de alergia. A partir de estudos pré-clínicos em animais e a aplicação de protocolos terapêuticos em ensaios clínico, foram desenvolvidas terapias mucosas que conseguem induzir mecanismos de tolerância específicos do alergeno, que são capazes de reverter a sensibilização alérgica. Devido a que o principal obstáculo nestas terapias continuam sendo as reações adversas induzidas durante o tratamento, é necessário realizar mais estudos para desenvolver protocolos terapêuticos mais seguros. Neste ponto, medicina translacional é um campo próspero para fortalecer as interações entre a ciência básica, a aplicada e a clínica.


Subject(s)
Humans , Food Hypersensitivity , Hypersensitivity , Immunotherapy , Allergens , Milk Hypersensitivity , Egg Hypersensitivity
13.
J Agric Food Chem ; 64(7): 1590-9, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26859063

ABSTRACT

Reactions to soy have been reported in a proportion of patients with IgE-mediated cow's milk allergy (CMA). In this work, we analyzed if Gly m Bd 28K/P28, one of the major soybean allergens, is a cross-reactive allergen with cow milk proteins (CMP). We showed that P28 was recognized by IgE sera from CMA patients and activated human peripheral basophils degranulation. Moreover, IgE sera of mice exclusively sensitized to CMP recognized P28. Splenocytes from sensitized animals secreted IL-5 and IL-13 when incubated with CMP or soy proteins, but only IL-13 when treated with P28. In addition, a skin test was strongly positive for CMP and weakly positive for P28. Remarkably, milk-sensitized mice showed hypersensitivity symptoms following sublingual challenge with P28 or CMP. With the use of bioinformatics' tools seven putative cross-reactive epitopes were identified. In conclusion, using in vitro and in vivo tests we demonstrated that P28 is a novel cross-reactive allergen with CMP.


Subject(s)
Antigens, Plant/immunology , Glycine max/immunology , Glycoproteins/immunology , Milk Hypersensitivity/immunology , Soybean Proteins/immunology , Allergens/immunology , Animals , Cattle , Cross Reactions , Humans , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-5/genetics , Interleukin-5/immunology , Male , Mice , Mice, Inbred BALB C , Milk Proteins/immunology , Skin Tests
14.
J Cell Physiol ; 231(7): 1575-85, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26566180

ABSTRACT

Galectins play key roles in the inflammatory cascade. In this study, we aimed to analyze the effect of galectin-1 (Gal-1) in the function of intestinal epithelial cells (IECs) isolated from healthy and inflamed mucosa. IECs isolated from mice or patients with inflammatory bowel diseases (IBD) were incubated with different pro-inflammatory cytokines, and Gal-1 binding, secretion of homeostatic factors and viability were assessed. Experimental models of food allergy and colitis were used to evaluate the in vivo influence of inflammation on Gal-1 binding and modulation of IECs. We found an enhanced binding of Gal-1 to: (a) murine IECs exposed to IL-1ß, TNF, and IL-13; (b) IECs from inflamed areas in intestinal tissue from IBD patients; (c) small bowel of allergic mice; and (d) colon from mice with experimental colitis. Our results showed that low concentrations of Gal-1 favored a tolerogenic micro-environment, whereas high concentrations of this lectin modulated viability of IECs through mechanisms involving activation of caspase-9 and modulation of Bcl-2 protein family members. Our results showed that, when added in the presence of diverse pro-inflammatory cytokines such as tumor necrosis factor (TNF), IL-13 and IL-5, Gal-1 differentially promoted the secretion of growth factors including thymic stromal lymphopoietin (TSLP), epidermal growth factor (EGF), IL-10, IL-25, and transforming growth factor (TGF-ß1 ). In conclusion, we found an augmented binding of Gal-1 to IECs when exposed in vitro or in vivo to inflammatory stimuli, showing different effects depending on Gal-1 concentration. These findings highlight the importance of the inflammatory micro-environment of mucosal tissues in modulating IECs susceptibility to the immunoregulatory lectin Gal-1 and its role in epithelial cell homeostasis.


Subject(s)
Colitis/metabolism , Galectin 1/metabolism , Inflammation/metabolism , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Animals , Cellular Microenvironment/genetics , Colitis/genetics , Colitis/pathology , Colon/metabolism , Colon/pathology , Food Hypersensitivity/genetics , Food Hypersensitivity/metabolism , Galectin 1/genetics , Humans , Inflammation/genetics , Inflammation/pathology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/pathology , Mice
15.
PLoS One ; 10(10): e0141116, 2015.
Article in English | MEDLINE | ID: mdl-26517875

ABSTRACT

The induction of peripheral tolerance may constitute a disease-modifying treatment for allergic patients. We studied how oral immunotherapy (OIT) with milk proteins controlled allergy in sensitized mice (cholera toxin plus milk proteins) upon exposure to the allergen. Symptoms were alleviated, skin test was negativized, serum specific IgE and IgG1 were abrogated, a substantial reduction in the secretion of IL-5 and IL-13 by antigen-stimulated spleen cells was observed, while IL-13 gene expression in jejunum was down-regulated, and IL-10 and TGF-ß were increased. In addition, we observed an induction of CD4+CD25+FoxP3+ cells and IL-10- and TGF-ß-producing regulatory T cells in the lamina propria. Finally, transfer experiments confirmed the central role of these cells in tolerance induction. We demonstrated that the oral administration of milk proteins pre- or post-sensitization controlled the Th2-immune response through the elicitation of mucosal IL-10- and TGF-ß-producing Tregs that inhibited hypersensitivity symptoms and the allergic response.


Subject(s)
Food Hypersensitivity/prevention & control , Interleukin-10/metabolism , Milk Proteins/administration & dosage , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/metabolism , Animals , Cholera Toxin/immunology , Disease Models, Animal , Food Hypersensitivity/immunology , Immunotherapy/methods , Interleukin-13/metabolism , Interleukin-5/metabolism , Male , Mice , Milk Proteins/immunology
16.
Allergy Asthma Immunol Res ; 7(1): 60-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25553264

ABSTRACT

PURPOSE: Soy-based formulas are widely used as dairy substitutes to treat milk allergy patients. However, reactions to soy have been reported in a small proportion of patients with IgE-mediated milk allergies. The aim of this work was to explore whether P34, a mayor soybean allergen, is involved in this cross-reactivity. METHODS: In vitro recognition of P34 was evaluated by immunoblotting, competitive ELISA and basophil activation tests (BAT) using sera from allergic patients. In vivo cross-reactivity was examined using an IgE-mediated milk allergy mouse model. RESULTS: P34 was recognized by IgE antibodies from the sera of milk allergic patients, casein-specific monoclonal antibodies, and sera from milk-allergic mice. Spleen cells from sensitized mice incubated with milk, soy or P34 secreted IL-5 and IL-13, while IFN-γ remained unchanged. In addition, the cutaneous test was positive with cow's milk proteins (CMP) and P34 in the milk allergy mouse model. Moreover, milk-sensitized mice developed immediate symptoms following sublingual exposure to P34. CONCLUSIONS: Our results demonstrate that P34 shares epitopes with bovine casein, which is responsible for inducing hypersensitivity symptoms in milk allergic mice. This is the first report of the in vivo cross-allergenicity of P34.

17.
Hum Vaccin Immunother ; 10(7): 2015-23, 2014.
Article in English | MEDLINE | ID: mdl-25424811

ABSTRACT

Food allergies are increasingly common disorders and no therapeutic strategies are yet approved. The unlipidated Omp16 (U-Omp16) is the outer membrane protein of 16 kDa from B. abortus and possesses a mucosal adjuvant property. In this study, we aimed to examine the U-Omp16 capacity to abrogate an allergen-specific Th2 immune response when it is administered as an oral adjuvant in a mouse model of food allergy.   Balb/c mice were sensitized with cholera toxin and cow's milk proteins (CMP) by gavage and simultaneously treated with U-Omp16 and CMP. Oral challenge with CMP was performed to evaluate the allergic status of mice. Symptoms, local (small bowel cytokine and transcription factor gene expression) and systemic (specific isotypes and spleen cell-secreted cytokines) parameters, and skin tests were done to evaluate the immune response. We found that the oral administration of U-Omp16 with CMP during sensitization dampened the allergic symptoms, with negativization of immediate skin test and increased skin DTH response. Serum specific IgE and IL-5 were inhibited and a Th1 response was promoted (specific IgG2a antibodies and CMP-induced IFN-γ secretion). We found at the mucosal site an inhibition of the gene expression corresponding to IL-13 and Gata-3, with an induction of IFN-γ and T-bet. These results indicated that the oral administration of U-Omp16 significantly controlled the allergic response in sensitized mice with a shift of the balance of Th1- and Th2-T cells toward Th1 predominance. These findings suggest that U-Omp16 may be useful as a Th1-directing adjuvant in an oral vaccine.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Bacterial Outer Membrane Proteins/administration & dosage , Brucella abortus/immunology , Milk Hypersensitivity/prevention & control , Administration, Oral , Animals , Immunoglobulin E/blood , Male , Mice, Inbred BALB C , Milk Proteins/immunology , Recombinant Proteins/administration & dosage , Th1 Cells/immunology , Th2 Cells/immunology
18.
PLoS One ; 9(1): e82341, 2014.
Article in English | MEDLINE | ID: mdl-24416141

ABSTRACT

BACKGROUND: Cross-reactivity between soybean allergens and bovine caseins has been previously reported. In this study we aimed to map epitopes of the major soybean allergen Gly m 5 that are co-recognized by casein specific antibodies, and to identify a peptide responsible for the cross-reactivity. METHODS: Cow's milk protein (CMP)-specific antibodies were used in different immunoassays (immunoblotting, ELISA, ELISA inhibition test) to evaluate the in vitro recognition of soybean proteins (SP). Recombinant Gly m 5 (α), a truncated fragment containing the C-terminal domain (α-T) and peptides of α-T were obtained and epitope mapping was performed with an overlapping peptide assay. Bioinformatics tools were used for epitope prediction by sequence alignment, and for modelling the cross-recognized soy proteins and peptides. The binding of SP to a monoclonal antibody was studied by surface Plasmon resonance (SPR). Finally, the in vivo cross-recognition of SP was assessed in a mouse model of milk allergy. RESULTS: Both α and α-T reacted with the different CMP-specific antibodies. α-T contains IgG and IgE epitopes in several peptides, particularly in the peptide named PA. Besides, we found similar values of association and dissociation constants between the α-casein specific mAb and the different milk and soy components. The food allergy mouse model showed that SP and PA contain the cross-reactive B and T epitopes, which triggered hypersensitivity reactions and a Th2-mediated response on CMP-sensitized mice. CONCLUSIONS: Gly m 5 is a cross-reactive soy allergen and the α-T portion of the molecule contains IgG and IgE immunodominant epitopes, confined to PA, a region with enough conformation to be bound by antibodies. These findings contribute to explain the intolerance to SP observed in IgE-mediated CMA patients, primarily not sensitised to SP, as well as it sets the basis to propose a mucosal immunotherapy for milk allergy using this soy peptide.


Subject(s)
Cross Reactions/immunology , Milk Hypersensitivity/immunology , Peptides/immunology , Soybean Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Antigens, Plant/chemistry , Antigens, Plant/immunology , Cattle , Computer Simulation , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Globulins/chemistry , Globulins/immunology , Immunohistochemistry , Kinetics , Mice , Milk Proteins/immunology , Molecular Sequence Data , Peptide Fragments/immunology , Protein Subunits/immunology , Recombinant Proteins/immunology , Seed Storage Proteins/chemistry , Seed Storage Proteins/immunology , Soybean Proteins/chemistry
19.
Innate Immun ; 20(6): 626-38, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24055879

ABSTRACT

The immunomodulatory power of heat-killed Gordonia bronchialis was studied on gut epithelial cells activated with pro-inflammatory stimuli (flagellin, TNF-α or IL-1ß). Light emission of luciferase-transfected epithelial cells and mRNA expression of IL-1ß, TNF-α, IL-6, CCL20, IL-8 and MCP-1 were measured. NF-κB activation was assessed by immunofluorescence and immunoblotting, and induction of reactive oxygen species (ROS) was evaluated. In vivo inhibitory properties of G. bronchialis were studied with ligated intestinal loop assay and in a mouse model of food allergy. G. bronchialis promoted the down-regulation of the expression of CCL20 and IL-1ß on activated epithelial cells in a dose-dependent manner. A concomitant blocking of nuclear p65 translocation with increased production of ROS was found. In vivo experiments confirmed the inhibition of CCL20 expression and the suppression of IgE sensitization and hypersensitivity symptoms in the food allergy mouse model. In conclusion, heat-killed G. bronchialis inhibited the activation of NF-κB pathway in human epithelial cells, and suppressed the expression of CCL20. These results indicate that G. bronchialis may be used to modulate the initial steps of innate immune activation, which further suppress the allergic sensitization. This approach may be exploited as a therapy for intestinal inflammation.


Subject(s)
Epithelial Cells/immunology , Epithelium/immunology , Gordonia Bacterium/immunology , Transcription Factor RelA/biosynthesis , Animals , Caco-2 Cells , Chemokine CCL20/biosynthesis , Chemokine CCL20/metabolism , Cholera Toxin/pharmacology , Dose-Response Relationship, Drug , Down-Regulation , Genes, Reporter/genetics , Humans , Inflammation Mediators , Male , Mice , Mice, Inbred BALB C , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reactive Oxygen Species/metabolism , Transcription Factor RelA/antagonists & inhibitors , Transcription Factor RelA/genetics
20.
PLoS One ; 8(7): e69438, 2013.
Article in English | MEDLINE | ID: mdl-23861971

ABSTRACT

The discovery of novel mucosal adjuvants will help to develop new formulations to control infectious and allergic diseases. In this work we demonstrate that U-Omp16 from Brucella spp. delivered by the nasal route (i.n.) induced an inflammatory immune response in bronchoalveolar lavage (BAL) and lung tissues. Nasal co-administration of U-Omp16 with the model antigen (Ag) ovalbumin (OVA) increased the amount of Ag in lung tissues and induced OVA-specific systemic IgG and T helper (Th) 1 immune responses. The usefulness of U-Omp16 was also assessed in a mouse model of food allergy. U-Omp16 i.n. administration during sensitization ameliorated the hypersensitivity responses of sensitized mice upon oral exposure to Cow's Milk Protein (CMP), decreased clinical signs, reduced anti-CMP IgE serum antibodies and modulated the Th2 response in favor of Th1 immunity. Thus, U-Omp16 could be used as a broad Th1 mucosal adjuvant for different Ag formulations.


Subject(s)
Adjuvants, Immunologic , Bacterial Outer Membrane Proteins/immunology , Brucella/immunology , Milk Hypersensitivity/immunology , Milk Proteins/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antigens/immunology , Antigens/metabolism , Bacterial Outer Membrane Proteins/administration & dosage , Bacterial Outer Membrane Proteins/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cattle , Central Nervous System/immunology , Central Nervous System/pathology , Cytokines/biosynthesis , Disease Models, Animal , Female , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Lung/immunology , Lung/pathology , Mice , Milk Hypersensitivity/metabolism , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Spleen/immunology , Th1 Cells/metabolism , Th2 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...