Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 29(4): 560-562, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30616904

ABSTRACT

Fluorination of metabolic hotspots in a molecule is a common medicinal chemistry strategy to improve in vivo half-life and exposure and, generally, this strategy offers significant benefits. Here, we report the application of this strategy to a series of poly-ADP ribose glycohydrolase (PARG) inhibitors, resulting in unexpected in vivo toxicity which was attributed to this single-atom modification.


Subject(s)
Cyclopropanes/pharmacology , Glycoside Hydrolases/toxicity , Microsomes, Liver/drug effects , Administration, Oral , Animals , Cyclopropanes/administration & dosage , Cyclopropanes/chemistry , Cyclopropanes/pharmacokinetics , Glycoside Hydrolases/administration & dosage , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/pharmacokinetics , Half-Life , Humans , Mice , Microsomes, Liver/metabolism
2.
J Med Chem ; 61(23): 10767-10792, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30403352

ABSTRACT

DNA damage repair enzymes are promising targets in the development of new therapeutic agents for a wide range of cancers and potentially other diseases. The enzyme poly(ADP-ribose) glycohydrolase (PARG) plays a pivotal role in the regulation of DNA repair mechanisms; however, the lack of potent drug-like inhibitors for use in cellular and in vivo models has limited the investigation of its potential as a novel therapeutic target. Using the crystal structure of human PARG in complex with the weakly active and cytotoxic anthraquinone 8a, novel quinazolinedione sulfonamides PARG inhibitors have been identified by means of structure-based virtual screening and library design. 1-Oxetan-3-ylmethyl derivatives 33d and 35d were selected for preliminary investigations in vivo. X-ray crystal structures help rationalize the observed structure-activity relationships of these novel inhibitors.


Subject(s)
DNA Repair , Drug Design , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , Quinazolinones/chemistry , Quinazolinones/pharmacology , Administration, Oral , Animals , Biological Availability , Catalytic Domain , Glycoside Hydrolase Inhibitors/administration & dosage , Glycoside Hydrolase Inhibitors/pharmacokinetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , HeLa Cells , Humans , Male , Mice , Models, Molecular , Quinazolinones/administration & dosage , Quinazolinones/pharmacokinetics , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 27(14): 3190-3195, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28545974

ABSTRACT

A series of reversible inhibitors of lysine specific demethylase 1 (LSD1) with a 5-hydroxypyrazole scaffold have been developed from compound 7, which was identified from the patent literature. Surface plasmon resonance (SPR) and biochemical analysis showed it to be a reversible LSD1 inhibitor with an IC50 value of 0.23µM. Optimisation of this compound by rational design afforded compounds with Kd values of <10nM. In human THP-1 cells, these compounds were found to upregulate the expression of the surrogate cellular biomarker CD86. Compound 11p was found to have moderate oral bioavailability in mice suggesting its potential for use as an in vivo tool compound.


Subject(s)
Histone Demethylases/antagonists & inhibitors , Pyrazoles/chemistry , Animals , B7-2 Antigen/metabolism , Binding Sites , Catalytic Domain , Cell Differentiation/drug effects , Cell Line , Half-Life , Histone Demethylases/metabolism , Humans , Inhibitory Concentration 50 , Mice , Molecular Docking Simulation , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Structure-Activity Relationship , Surface Plasmon Resonance
4.
J Med Chem ; 59(24): 11120-11137, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28002956

ABSTRACT

A collaborative high throughput screen of 1.35 million compounds against mutant (R132H) isocitrate dehydrogenase IDH1 led to the identification of a novel series of inhibitors. Elucidation of the bound ligand crystal structure showed that the inhibitors exhibited a novel binding mode in a previously identified allosteric site of IDH1 (R132H). This information guided the optimization of the series yielding submicromolar enzyme inhibitors with promising cellular activity. Encouragingly, one compound from this series was found to induce myeloid differentiation in primary human IDH1 R132H AML cells in vitro.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Isocitrate Dehydrogenase/antagonists & inhibitors , Leukemia, Myeloid, Acute/enzymology , Allosteric Regulation/drug effects , Cell Differentiation/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Humans , Isocitrate Dehydrogenase/isolation & purification , Isocitrate Dehydrogenase/metabolism , Leukemia, Myeloid, Acute/pathology , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
5.
ACS Chem Biol ; 11(11): 3179-3190, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27689388

ABSTRACT

The enzyme poly(ADP-ribose) glycohydrolase (PARG) performs a critical role in the repair of DNA single strand breaks (SSBs). However, a detailed understanding of its mechanism of action has been hampered by a lack of credible, cell-active chemical probes. Herein, we demonstrate inhibition of PARG with a small molecule, leading to poly(ADP-ribose) (PAR) chain persistence in intact cells. Moreover, we describe two advanced, and chemically distinct, cell-active tool compounds with convincing on-target pharmacology and selectivity. Using one of these tool compounds, we demonstrate pharmacology consistent with PARG inhibition. Further, while the roles of PARG and poly(ADP-ribose) polymerase (PARP) are closely intertwined, we demonstrate that the pharmacology of a PARG inhibitor differs from that observed with the more thoroughly studied PARP inhibitor olaparib. We believe that these tools will facilitate a wider understanding of this important component of DNA repair and may enable the development of novel therapeutic agents exploiting the critical dependence of tumors on the DNA damage response (DDR).


Subject(s)
DNA Repair , Glycoside Hydrolases/chemistry , Molecular Probes/chemistry , Phthalazines/pharmacology , Piperazines/pharmacology , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , HeLa Cells , Humans , Surface Plasmon Resonance
6.
F1000Res ; 5: 1005, 2016.
Article in English | MEDLINE | ID: mdl-27429741

ABSTRACT

RET (REarranged during Transfection) is a receptor tyrosine kinase, which plays pivotal roles in regulating cell survival, differentiation, proliferation, migration and chemotaxis. Activation of RET is a mechanism of oncogenesis in medullary thyroid carcinomas where both germline and sporadic activating somatic mutations are prevalent. At present, there are no known specific RET inhibitors in clinical development, although many potent inhibitors of RET have been opportunistically identified through selectivity profiling of compounds initially designed to target other tyrosine kinases. Vandetanib and cabozantinib, both multi-kinase inhibitors with RET activity, are approved for use in medullary thyroid carcinoma, but additional pharmacological activities, most notably inhibition of vascular endothelial growth factor - VEGFR2 (KDR), lead to dose-limiting toxicity. The recent identification of RET fusions present in ~1% of lung adenocarcinoma patients has renewed interest in the identification and development of more selective RET inhibitors lacking the toxicities associated with the current treatments. In an earlier publication [Newton et al, 2016; 1] we reported the discovery of a series of 2-substituted phenol quinazolines as potent and selective RET kinase inhibitors. Here we describe the development of the robust screening cascade which allowed the identification and advancement of this chemical series.  Furthermore we have profiled a panel of RET-active clinical compounds both to validate the cascade and to confirm that none display a RET-selective target profile.

7.
Endocrinology ; 157(11): 4257-4265, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27649090

ABSTRACT

Glucocorticoid (Gc) excess, from endogenous overproduction in disorders of the hypothalamic-pituitary-adrenal axis or exogenous medical therapy, is recognized to cause adverse metabolic side effects. The Gc receptor (GR) is widely expressed throughout the body, including brain regions such as the hypothalamus. However, the extent to which chronic Gcs affect Gc concentrations in the hypothalamus and impact on GR and target genes is unknown. To investigate this, we used a murine model of corticosterone (Cort)-induced obesity and analyzed Cort levels in the hypothalamus and expression of genes relevant to Gc action. Mice were administered Cort (75 µg/mL) or ethanol (1%, vehicle) in drinking water for 4 weeks. Cort-treated mice had increased body weight, food intake, and adiposity. As expected, Cort increased plasma Cort levels at both zeitgeber time 1 and zeitgeber time 13, ablating the diurnal rhythm. Liquid chromatography dual tandem mass spectrometry revealed a 4-fold increase in hypothalamic Cort, which correlated with circulating levels and concentrations of Cort in other brain regions. This occurred despite decreased 11ß-hydroxysteroid dehydrogenase (Hsd11b1) expression, the gene encoding the enzyme that regenerates active Gcs, whereas efflux transporter Abcb1 mRNA was unaltered. In addition, although Cort decreased hypothalamic GR (Nr3c1) expression 2-fold, the Gc-induced leucine zipper (Tsc22d3) mRNA increased, which indicated elevated GR activation. In keeping with the development of hyperphagia and obesity, Cort increased Agrp, but there were no changes in Pomc, Npy, or Cart mRNA in the hypothalamus. In summary, chronic Cort treatment causes chronic increases in hypothalamic Cort levels and a persistent elevation in Agrp, a mediator in the development of metabolic disturbances.


Subject(s)
Glucocorticoids/metabolism , Hyperphagia/etiology , Hypothalamus/drug effects , Hypothalamus/metabolism , Obesity/etiology , Animals , Body Weight/drug effects , Chromatography, Liquid , Eating/drug effects , Glucocorticoids/blood , Glucocorticoids/pharmacology , Hyperphagia/blood , In Situ Hybridization , Male , Mice , Mice, Inbred C57BL , Obesity/blood , Real-Time Polymerase Chain Reaction , Tandem Mass Spectrometry , Time Factors
8.
Bioorg Med Chem Lett ; 26(11): 2724-9, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27086121

ABSTRACT

We have previously reported a series of anilinoquinazoline derivatives as potent and selective biochemical inhibitors of the RET kinase domain. However, these derivatives displayed diminished cellular potency. Herein we describe further optimisation of the series through modification of their physicochemical properties, delivering improvements in cell potency. However, whilst cellular selectivity against key targets could be maintained, combining cell potency and acceptable pharmacokinetics proved challenging.


Subject(s)
Aniline Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Quinazolines/pharmacology , Aniline Compounds/chemical synthesis , Aniline Compounds/chemistry , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-ret/metabolism , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
9.
Eur J Med Chem ; 112: 20-32, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26874741

ABSTRACT

Deregulation of the receptor tyrosine kinase RET has been implicated in medullary thyroid cancer, a small percentage of lung adenocarcinomas, endocrine-resistant breast cancer and pancreatic cancer. There are several clinically approved multi-kinase inhibitors that target RET as a secondary pharmacology but additional activities, most notably inhibition of KDR, lead to dose-limiting toxicities. There is, therefore, a clinical need for more specific RET kinase inhibitors. Herein we report our efforts towards identifying a potent and selective RET inhibitor using vandetanib 1 as the starting point for structure-based drug design. Phenolic anilinoquinazolines exemplified by 6 showed improved affinities towards RET but, unsurprisingly, suffered from high metabolic clearance. Efforts to mitigate the metabolic liability of the phenol led to the discovery that a flanking substituent not only improved the hepatocyte stability, but could also impart a significant gain in selectivity. This culminated in the identification of 36; a potent RET inhibitor with much improved selectivity against KDR.


Subject(s)
Piperidines/chemistry , Piperidines/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Quinazolines/chemistry , Quinazolines/pharmacology , Animals , Cell Line , Drug Design , Humans , Mice , Molecular Docking Simulation , Piperidines/pharmacokinetics , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-ret/metabolism , Quinazolines/pharmacokinetics
11.
J Med Chem ; 56(16): 6352-70, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23859074

ABSTRACT

The recently discovered enzyme tyrosyl-DNA phosphodiesterase 2 (TDP2) has been implicated in the topoisomerase-mediated repair of DNA damage. In the clinical setting, it has been hypothesized that TDP2 may mediate drug resistance to topoisomerase II (topo II) inhibition by etoposide. Therefore, selective pharmacological inhibition of TDP2 is proposed as a novel approach to overcome intrinsic or acquired resistance to topo II-targeted drug therapy. Following a high-throughput screening (HTS) campaign, toxoflavins and deazaflavins were identified as the first reported sub-micromolar and selective inhibitors of this enzyme. Toxoflavin derivatives appeared to exhibit a clear structure-activity relationship (SAR) for TDP2 enzymatic inhibition. However, we observed a key redox liability of this series, and this, alongside early in vitro drug metabolism and pharmacokinetics (DMPK) issues, precluded further exploration. The deazaflavins were developed from a singleton HTS hit. This series showed distinct SAR and did not display redox activity; however low cell permeability proved to be a challenge.


Subject(s)
Phosphoric Diester Hydrolases/drug effects , Pyrimidinones/pharmacology , Topoisomerase II Inhibitors/pharmacology , Triazines/pharmacology , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemistry
12.
J Med Chem ; 55(9): 4431-45, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22506561

ABSTRACT

Novel derivatives of the steroid DHEA 1, a known uncompetitive inhibitor of G6PD, were designed, synthesized, and tested for their ability to inhibit this dehydrogenase enzyme. Several compounds with approximately 10-fold improved potency in an enzyme assay were identified, and this improved activity translated to efficacy in a cellular assay. The SAR for steroid inhibition of G6PD has been substantially developed; the 3ß-alcohol can be replaced with 3ß-H-bond donors such as sulfamide, sulfonamide, urea, and carbamate. Improved potency was achieved by replacing the androstane nucleus with a pregnane nucleus, provided a ketone at C-20 is present. For pregnan-20-ones incorporation of a 21-hydroxyl group is often beneficial. The novel compounds generally have good physicochemical properties and satisfactory in vitro DMPK parameters. These derivatives may be useful for examining the role of G6PD inhibition in cells and will assist the future design of more potent steroid inhibitors with potential therapeutic utility.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Pregnanes/chemistry , Pregnanes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Survival/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Glucosephosphate Dehydrogenase/metabolism , HEK293 Cells , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Mass Spectrometry , Pregnanes/chemical synthesis , Pregnanes/pharmacokinetics , Structure-Activity Relationship
13.
Drug Metab Dispos ; 39(10): 1789-93, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21764943

ABSTRACT

Acidic phospholipid binding plays an important role in determining the tissue distribution of basic drugs. This article describes the use of surface plasmon resonance to measure binding affinity (K(D)) of three basic drugs to phosphatidylserine, a major tissue acidic phospholipid. The data are incorporated into mechanistic tissue composition equations to allow prediction of the steady-state volume of distribution (V(ss)). The prediction accuracy of V(ss) using this approach is compared with the original methodology described by Rodgers et al. (J Pharm Sci 94:1259-1276), in which the binding to acidic phospholipids is calculated from the blood/plasma concentration ratio (BPR). The compounds used in this study [amlodipine, propranolol, and 3-dimethylaminomethyl-4-(4-methylsulfanyl-phenoxy)-benzenesulfonamide (UK-390957)] showed higher affinity binding to phosphatidylserine than to phosphatidylcholine. When the binding affinity to phosphatidylserine was incorporated into mechanistic tissue composition equations, the V(ss) was more accurately predicted for all three compounds by using the surface plasmon resonance measurement than by using the BPR to estimate acidic phospholipid binding affinity. The difference was particularly marked for UK-390957, a sulfonamide that has a high BPR due to binding to carbonic anhydrase. The novel approach described in this article allows the binding affinity of drugs to an acidic phospholipid (phosphatidylserine) to be measured directly and demonstrates the utility of the binding data in the prediction of V(ss).


Subject(s)
Models, Chemical , Pharmaceutical Preparations/metabolism , Phosphatidylserines/metabolism , Amlodipine/metabolism , Hydrogen-Ion Concentration , Liposomes/metabolism , Pharmaceutical Preparations/chemistry , Pharmacokinetics , Phosphatidylserines/chemistry , Propranolol/metabolism , Protein Binding , Sulfonamides/metabolism , Surface Plasmon Resonance/methods , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...