Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(4): e0301474, 2024.
Article in English | MEDLINE | ID: mdl-38564614

ABSTRACT

With the decline of bee populations worldwide, studies determining current wild bee distributions and diversity are increasingly important. Wild bee identification is often completed by experienced taxonomists or by genetic analysis. The current study was designed to compare two methods of identification including: (1) morphological identification by experienced taxonomists using images of field-collected wild bees and (2) genetic analysis of composite bee legs (multiple taxa) using metabarcoding. Bees were collected from conservation grasslands in eastern Iowa in summer 2019 and identified to the lowest taxonomic unit using both methods. Sanger sequencing of individual wild bee legs was used as a positive control for metabarcoding. Morphological identification of bees using images resulted in 36 unique taxa among 22 genera, and >80% of Bombus specimens were identified to species. Metabarcoding was limited to genus-level assignments among 18 genera but resolved some morphologically similar genera. Metabarcoding did not consistently detect all genera in the composite samples, including kleptoparasitic bees. Sanger sequencing showed similar presence or absence detection results as metabarcoding but provided species-level identifications for cryptic species (i.e., Lasioglossum). Genus-specific detections were more frequent with morphological identification than metabarcoding, but certain genera such as Ceratina and Halictus were identified equally well with metabarcoding and morphology. Genera with proportionately less tissue in a composite sample were less likely to be detected using metabarcoding. Image-based methods were limited by image quality and visible morphological features, while genetic methods were limited by databases, primers, and amplification at target loci. This study shows how an image-based identification method compares with genetic techniques, and how in combination, the methods provide valuable genus- and species-level information for wild bees while preserving tissue for other analyses. These methods could be improved and transferred to a field setting to advance our understanding of wild bee distributions and to expedite conservation research.


Subject(s)
DNA Barcoding, Taxonomic , Animals , Bees/genetics , Databases, Factual , Iowa , DNA Barcoding, Taxonomic/methods
3.
Environ Toxicol Chem ; 43(5): 1138-1148, 2024 May.
Article in English | MEDLINE | ID: mdl-38517104

ABSTRACT

Municipal and industrial wastewater effluent is an important source of water for lotic systems, especially during periods of low flow. The accumulated wastewater effluent flows-expressed as a percentage of total streamflow (ACCWW%)-contain chemical mixtures that pose a risk to aquatic life; fish may be particularly vulnerable when chronically exposed. Although there has been considerable focus on individual-level effects of exposure to chemical mixtures found in wastewater effluent, scaling up to population-level effects remains a challenging component needed to better understand the potential consequences of exposure in wild populations. This may be particularly important under a changing climate in which wastewater reuse could be essential to maintain river flows. We evaluated the effects of chronic exposure to wastewater effluent, as measured by ACCWW%, on the relative abundance of young-of-year (YOY), juvenile, and adult smallmouth bass (Micropterus dolomieu) populations in the Shenandoah River Watershed (USA). We found that increases in ACCWW% in the previous year and during the prespawn period were negatively correlated with the relative abundance of YOY, resulting in an average 41% predicted decrease in abundance (range = 0.5%-94% predicted decrease in abundance). This lagged effect suggests that adult fish reproductive performance may be compromised by chemical exposure during periods of high ACCWW%. No relationships between ACCWW% and juvenile or adult relative abundance were found, suggesting that negative effects of ACCWW% on YOY abundance may be offset due to compensatory mechanisms following higher ACCWW% exposure. Understanding the effects of wastewater effluent exposure at multiple levels of biological organization will help in the development of management strategies aimed at protecting aquatic life. Environ Toxicol Chem 2024;43:1138-1148. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Bass , Rivers , Wastewater , Water Pollutants, Chemical , Animals , Rivers/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Wastewater/toxicity , Environmental Monitoring , Waste Disposal, Fluid
4.
Sci Total Environ ; 919: 170838, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340869

ABSTRACT

Large variations in redox-related water parameters, like pH and dissolved oxygen (DO), have been documented in New Hampshire (United States) drinking-water wells over the course of a few hours under pumping conditions. These findings suggest that comparable sub-daily variability in dissolved concentrations of redox-reactive and toxic arsenic (As) also may occur, representing a potentially critical public-health data gap and a fundamental challenge for long-term As-trends monitoring. To test this hypothesis, discrete groundwater As samples were collected approximately hourly during one day in May and again in August 2019 from three New Hampshire drinking-water wells (2 public-supply, 1 private) under active pumping conditions. Collected samples were assessed by laboratory analysis (total As [AsTot], As(III), As(V)) and by field analysis (AsTot) using a novel integrated biosensor system. Laboratory analysis revealed sub-daily variability (range) in AsTot concentrations equivalent to 16 % - 36 % of that observed in the antecedent 3-year bimonthly trend monitoring. Thus, the results indicated that, along with previously demonstrated seasonality effects, the timing and duration of pumping are important considerations when assessing trends in drinking-water As exposures and concomitant risks. Results also illustrated the utility of the field sensor for monitoring and management of AsTot exposures in near-real-time.


Subject(s)
Arsenic , Drinking Water , Groundwater , Water Pollutants, Chemical , United States , Water Wells , Water Supply , New Hampshire , Arsenic/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Drinking Water/analysis
5.
Conserv Physiol ; 11(1): coad090, 2023.
Article in English | MEDLINE | ID: mdl-38090122

ABSTRACT

Infectious diseases are a major driver of the global amphibian decline. In addition, many factors, including genetics, stress, pollution, and climate change can influence the response to pathogens. Therefore, it is important to be able to evaluate amphibian immunity in the laboratory and in the field. The phytohemagglutinin (PHA) assay is an inexpensive and relatively non-invasive tool that has been used extensively to assess immunocompetence, especially in birds, and more recently in amphibians. However, there is substantial variation in experimental methodology among amphibian PHA studies in terms of species and life stages, PHA doses and injection sites, and use of experimental controls. Here, we compile and compare all known PHA studies in amphibians to identify knowledge gaps and develop best practices for future work. We found that research has only been conducted on a limited number of species, which may not reflect the diversity of amphibians. There is also a lack of validation studies in most species, so that doses and timing of PHA injection and subsequent swelling measurements may not effectively evaluate immunocompetence. Based on these and other findings, we put forward a set of recommendations to make future PHA studies more consistent and improve the ability to utilize this assay in wild populations, where immune surveillance is greatly needed.

6.
R Soc Open Sci ; 10(11): 231093, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38026041

ABSTRACT

Pollinator diversity and abundance are declining globally. Cropland agriculture and the corresponding use of agricultural pesticides may contribute to these declines, while increased pollinator habitat (flowering plants) can help mitigate them. Here we tested whether the relative effect of wildflower plantings on pollinator diversity and counts were modified by proportion of nearby agricultural land cover and pesticide exposure in 24 conserved grasslands in Iowa, USA. Compared with general grassland conservation practices, wildflower plantings led to only a 5% increase in pollinator diversity and no change in counts regardless of the proportion of cropland agriculture within a 1 km radius. Pollinator diversity increased earlier in the growing season and with per cent flower cover. Unexpectedly, neither insecticide nor total pesticide concentrations on above-ground passive samplers were related to pollinator diversity. However, pollinator community composition was most strongly related to date of sampling, total pesticide concentration, and forb or flower cover. Our results indicate very little difference in pollinator diversity between grassland conservation practices with and without wildflower plantings. Given the relatively high economic costs of wildflower plantings, our research provides initial evidence that investment in general grassland conservation may efficiently conserve pollinator diversity in temperate regions of intensive cropland agriculture.

7.
Environ Sci Technol ; 57(45): 17511-17521, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37902062

ABSTRACT

Mercury (Hg) is a toxic contaminant that has been mobilized and distributed worldwide and is a threat to many wildlife species. Amphibians are facing unprecedented global declines due to many threats including contaminants. While the biphasic life history of many amphibians creates a potential nexus for methylmercury (MeHg) exposure in aquatic habitats and subsequent health effects, the broad-scale distribution of MeHg exposure in amphibians remains unknown. We used nonlethal sampling to assess MeHg bioaccumulation in 3,241 juvenile and adult amphibians during 2017-2021. We sampled 26 populations (14 species) across 11 states in the United States, including several imperiled species that could not have been sampled by traditional lethal methods. We examined whether life history traits of species and whether the concentration of total mercury in sediment or dragonflies could be used as indicators of MeHg bioaccumulation in amphibians. Methylmercury contamination was widespread, with a 33-fold difference in concentrations across sites. Variation among years and clustered subsites was less than variation across sites. Life history characteristics such as size, sex, and whether the amphibian was a frog, toad, newt, or other salamander were the factors most strongly associated with bioaccumulation. Total Hg in dragonflies was a reliable indicator of bioaccumulation of MeHg in amphibians (R2 ≥ 0.67), whereas total Hg in sediment was not (R2 ≤ 0.04). Our study, the largest broad-scale assessment of MeHg bioaccumulation in amphibians, highlights methodological advances that allow for nonlethal sampling of rare species and reveals immense variation among species, life histories, and sites. Our findings can help identify sensitive populations and provide environmentally relevant concentrations for future studies to better quantify the potential threats of MeHg to amphibians.


Subject(s)
Mercury , Methylmercury Compounds , Odonata , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Mercury/analysis , Amphibians , Environmental Monitoring
8.
Environ Int ; 178: 108033, 2023 08.
Article in English | MEDLINE | ID: mdl-37356308

ABSTRACT

Drinking-water quality is a rising concern in the United States (US), emphasizing the need to broadly assess exposures and potential health effects at the point-of-use. Drinking-water exposures to per- and poly-fluoroalkyl substances (PFAS) are a national concern, however, there is limited information on PFAS in residential tapwater at the point-of-use, especially from private-wells. We conducted a national reconnaissance to compare human PFAS exposures in unregulated private-well and regulated public-supply tapwater. Tapwater from 716 locations (269 private-wells; 447 public supply) across the US was collected during 2016-2021 including three locations where temporal sampling was conducted. Concentrations of PFAS were assessed by three laboratories and compared with land-use and potential-source metrics to explore drivers of contamination. The number of individual PFAS observed ranged from 1 to 9 (median: 2) with corresponding cumulative concentrations (sum of detected PFAS) ranging from 0.348 to 346 ng/L. Seventeen PFAS were observed at least once with PFBS, PFHxS and PFOA observed most frequently in approximately 15% of the samples. Across the US, PFAS profiles and estimated median cumulative concentrations were similar among private wells and public-supply tapwater. We estimate that at least one PFAS could be detected in about 45% of US drinking-water samples. These detection probabilities varied spatially with limited temporal variation in concentrations/numbers of PFAS detected. Benchmark screening approaches indicated potential human exposure risk was dominated by PFOA and PFOS, when detected. Potential source and land-use information was related to cumulative PFAS concentrations, and the number of PFAS detected; however, corresponding relations with specific PFAS were limited likely due to low detection frequencies and higher detection limits. Information generated supports the need for further assessments of cumulative health risks of PFAS as a class and in combination with other co-occurring contaminants, particularly in unmonitored private-wells where information is limited or not available.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , United States , Humans , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Water Quality , Water , Laboratories
9.
Sci Adv ; 9(18): eadf4896, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37134169

ABSTRACT

Documenting trends of stream macroinvertebrate biodiversity is challenging because biomonitoring often has limited spatial, temporal, and taxonomic scopes. We analyzed biodiversity and composition of assemblages of >500 genera, spanning 27 years, and 6131 stream sites across forested, grassland, urban, and agricultural land uses throughout the United States. In this dataset, macroinvertebrate density declined by 11% and richness increased by 12.2%, and insect density and richness declined by 23.3 and 6.8%, respectively, over 27 years. In addition, differences in richness and composition between urban and agricultural versus forested and grassland streams have increased over time. Urban and agricultural streams lost the few disturbance-sensitive taxa they once had and gained disturbance-tolerant taxa. These results suggest that current efforts to protect and restore streams are not sufficient to mitigate anthropogenic effects.


Subject(s)
Ecosystem , Invertebrates , Animals , Rivers , Biodiversity , Forests , Environmental Monitoring
10.
Sci Total Environ ; 880: 163160, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37003337

ABSTRACT

To inform responsible energy development, it is important to understand the ecological effects of contamination events. Wastewaters, a common byproduct of oil and gas extraction, often contain high concentrations of sodium chloride (NaCl) and heavy metals (e.g., strontium and vanadium). These constituents can negatively affect aquatic organisms, but there is scarce information for how wastewaters influence potentially distinct microbiomes in wetland ecosystems. Additionally, few studies have concomitantly investigated effects of wastewaters on the habitat (water and sediment) and skin microbiomes of amphibians or relationships among these microbial communities. We sampled microbiomes of water, sediment, and skin of four larval amphibian species across a gradient of chloride contamination (0.04-17,500 mg/L Cl) in the Prairie Pothole Region of North America. We detected 3129 genetic phylotypes and 68 % of those phylotypes were shared among the three sample types. The most common shared phylotypes were Proteobacteria, Firmicutes, and Bacteroidetes. Salinity of wastewaters increased dissimilarity within all three microbial communities, but not the diversity or richness of water and skin microbial communities. Strontium was associated with lower diversity and richness of sediment microbial communities, but not those of water or amphibian skin, likely because metal deposition occurs in sediment when wetlands dry. Based on Bray Curtis distance matrices, sediment microbiomes were similar to those of water, but neither had substantial overlap with amphibian microbiomes. Species identity was the strongest predictor of amphibian microbiomes; frog microbiomes were similar but differed from that of the salamander, whose microbiome had the lowest richness and diversity. Understanding how effects of wastewaters on the dissimilarity, richness, and diversity of microbial communities also influence the ecosystem function of communities will be an important next step. However, our study provides novel insight into the characteristics of, and associations among, different wetland microbial communities and effects of wastewaters from energy production.


Subject(s)
Metals, Heavy , Microbiota , Animals , Wastewater , Water , Anura , Sodium Chloride , Strontium
11.
Sci Total Environ ; 868: 161672, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36657670

ABSTRACT

In the United States and globally, contaminant exposure in unregulated private-well point-of-use tapwater (TW) is a recognized public-health data gap and an obstacle to both risk-management and homeowner decision making. To help address the lack of data on broad contaminant exposures in private-well TW from hydrologically-vulnerable (alluvial, karst) aquifers in agriculturally-intensive landscapes, samples were collected in 2018-2019 from 47 northeast Iowa farms and analyzed for 35 inorganics, 437 unique organics, 5 in vitro bioassays, and 11 microbial assays. Twenty-six inorganics and 51 organics, dominated by pesticides and related transformation products (35 herbicide-, 5 insecticide-, and 2 fungicide-related), were observed in TW. Heterotrophic bacteria detections were near ubiquitous (94 % of the samples), with detection of total coliform bacteria in 28 % of the samples and growth on at least one putative-pathogen selective media across all TW samples. Health-based hazard index screening levels were exceeded frequently in private-well TW and attributed primarily to inorganics (nitrate, uranium). Results support incorporation of residential treatment systems to protect against contaminant exposure and the need for increased monitoring of rural private-well homes. Continued assessment of unmonitored and unregulated private-supply TW is needed to model contaminant exposures and human-health risks.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , United States , Humans , Iowa , Water Pollutants, Chemical/analysis , Agriculture , Environmental Monitoring/methods
12.
Environ Int ; 171: 107701, 2023 01.
Article in English | MEDLINE | ID: mdl-36542998

ABSTRACT

BACKGROUND: Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/microbial contaminants in BW. METHODS: BW from 30 total domestic US (23) and imported (7) sources, including purified tapwater (7) and spring water (23), were analyzed for 3 field parameters, 53 inorganics, 465 organics, 14 microbial metrics, and in vitro estrogen receptor (ER) bioactivity. Health-benchmark-weighted cumulative hazard indices and ratios of organic-contaminant in vitro exposure-activity cutoffs were assessed for detected regulated and unregulated inorganic and organic contaminants. RESULTS: 48 inorganics and 45 organics were detected in sampled BW. No enforceable chemical quality standards were exceeded, but several inorganic and organic contaminants with maximum contaminant level goal(s) (MCLG) of zero (no known safe level of exposure to vulnerable sub-populations) were detected. Among these, arsenic, lead, and uranium were detected in 67 %, 17 %, and 57 % of BW, respectively, almost exclusively in spring-sourced samples not treated by advanced filtration. Organic MCLG exceedances included frequent detections of disinfection byproducts (DBP) in tapwater-sourced BW and sporadic detections of DBP and volatile organic chemicals in BW sourced from tapwater and springs. Precautionary health-based screening levels were exceeded frequently and attributed primarily to DBP in tapwater-sourced BW and co-occurring inorganic and organic contaminants in spring-sourced BW. CONCLUSION: The results indicate that simultaneous exposures to multiple drinking-water contaminants of potential human-health concern are common in BW. Improved understandings of human exposures based on more environmentally realistic and directly comparable point-of-use exposure characterizations, like this BW study, are essential to public health because drinking water is a biological necessity and, consequently, a high-vulnerability vector for human contaminant exposures.


Subject(s)
Drinking Water , Volatile Organic Compounds , Water Pollutants, Chemical , Humans , United States , Water Supply , Environmental Exposure/adverse effects , Water Pollutants, Chemical/analysis
13.
Environ Sci Technol ; 57(1): 321-330, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36573799

ABSTRACT

Conservation efforts have been implemented in agroecosystems to enhance pollinator diversity by creating grassland habitat, but little is known about the exposure of bees to pesticides while foraging in these grassland fields. Pesticide exposure was assessed in 24 conservation grassland fields along an agricultural gradient at two time points (July and August) using silicone band passive samplers (nonlethal) and bee tissues (lethal). Overall, 46 pesticides were detected including 9 herbicides, 19 insecticides, 17 fungicides, and a plant growth regulator. For the bands, there were more frequent/higher concentrations of herbicides in July (maximum: 1600 ng/band in July; 570 ng/band in August), while insecticides and fungicides had more frequent/higher concentrations in August (maximum: 110 and 65 ng/band in July; 1500 and 1700 ng/band in August). Pesticide concentrations in bands increased 16% with every 10% increase in cultivated crops. The bee tissues showed no difference in detection frequency, and concentrations were similar among months; maximum concentrations of herbicides, insecticides, and fungicides in July and August were 17, 27, and 180 and 19, 120, and 170 ng/g, respectively. Pesticide residues in bands and bee tissues did not always show the same patterns; of the 20 compounds observed in both media, six (primarily fungicides) showed a detection-concentration relationship between the two media. Together, the band and bee residue data can provide a more complete understanding of pesticide exposure and accumulation in conserved grasslands.


Subject(s)
Fungicides, Industrial , Herbicides , Insecticides , Pesticides , Bees , Animals , Pesticides/analysis , Fungicides, Industrial/analysis , Grassland
14.
J Environ Manage ; 326(Pt A): 116734, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36384057

ABSTRACT

Best management practices (BMPs) have been predominantly used throughout the Chesapeake Bay watershed (CBW) to reduce nutrients and sediments entering streams, rivers, and the bay. These practices have been successful in reducing loads entering the estuary and have shown the potential to reduce other contaminants (pesticides, hormonally active compounds, pathogens) in localized studies and modeled load estimates. However, further understanding of relationships between BMPs and non-nutrient contaminant reductions at regional scales using sampled data would be beneficial. Total estrogenic activity was measured in surface water samples collected over a decade (2008-2018) in 211 undeveloped NHDPlus V2.1 watersheds within the CBW. Bayesian hierarchical modeling between total estrogenic activity and landscape predictors including landcover, runoff, BMP intensity, and a BMP*agriculture intensity interaction term indicates a 96% posterior probability that BMP intensity on agricultural land is reducing total estrogenic activity. Additionally, watersheds with high agriculture and low BMPs had a 49% posterior probability of exceeding an effects-based threshold in aquatic organisms of 1 ng/L but only a 1% posterior probability of exceeding this threshold in high-agriculture, high-BMP watersheds.


Subject(s)
Bays , Pesticides , Bayes Theorem , Agriculture , Rivers
15.
ACS ES T Water ; 2(10): 1772-1788, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36277121

ABSTRACT

In the United States (US), private-supply tapwater (TW) is rarely monitored. This data gap undermines individual/community risk-management decision-making, leading to an increased probability of unrecognized contaminant exposures in rural and remote locations that rely on private wells. We assessed point-of-use (POU) TW in three northern plains Tribal Nations, where ongoing TW arsenic (As) interventions include expansion of small community water systems and POU adsorptive-media treatment for Strong Heart Water Study participants. Samples from 34 private-well and 22 public-supply sites were analyzed for 476 organics, 34 inorganics, and 3 in vitro bioactivities. 63 organics and 30 inorganics were detected. Arsenic, uranium (U), and lead (Pb) were detected in 54%, 43%, and 20% of samples, respectively. Concentrations equivalent to public-supply maximum contaminant level(s) (MCL) were exceeded only in untreated private-well samples (As 47%, U 3%). Precautionary health-based screening levels were exceeded frequently, due to inorganics in private supplies and chlorine-based disinfection byproducts in public supplies. The results indicate that simultaneous exposures to co-occurring TW contaminants are common, warranting consideration of expanded source, point-of-entry, or POU treatment(s). This study illustrates the importance of increased monitoring of private-well TW, employing a broad, environmentally informative analytical scope, to reduce the risks of unrecognized contaminant exposures.

16.
Sci Total Environ ; 851(Pt 1): 158205, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36028019

ABSTRACT

Aquatic ecosystems convey complex contaminant mixtures from anthropogenic pollution on a global scale. Point (e.g., municipal wastewater) and nonpoint sources (e.g., stormwater runoff) are both drivers of contaminant mixtures in aquatic habitats. The objectives of this study were to identify the contaminant mixtures present in surface waters impacted by both point and nonpoint sources, to determine if aquatic biota (amphibian and fish) health effects (testicular oocytes and parasites) occurred at these sites, and to understand if differences in biological and chemical measures existed between point (on-stream) and nonpoint sources (off-stream). To accomplish this, water chemistry, fishes, and frogs were collected from 21 sites in the New Jersey Pinelands, United States. Off-stream sites consisted of 3 reference and 10 degraded wetlands. On-stream sites consisted of two reference lakes and six degraded streams/lakes (four sites above and two sites below wastewater outfalls). Surface water was collected four times at each site and analyzed for 133 organic and inorganic contaminants. One native and five non-native fish species were collected from streams/lakes and native green frogs from wetlands (ponds and stormwater basins). Limited differences in contaminant concentrations were observed in reference and degraded wetlands but for streams/lakes, results indicated that landscape alteration, (upland agricultural and developed land) was the primary driver of contaminant concentrations rather than municipal wastewater. Incidence of estrogenic endocrine disruption (intersex) was species dependent with the highest prevalence observed in largemouth bass and black crappie and the lowest prevalence observed in green frogs and tessellated darters. Parasite prevalence was site and species dependent. Prevalence of eye parasites increased with increasing concentrations of industrial, mycotoxin, and cumulative inorganic contaminants. These findings are critical to support the conservation, protection, and management of a wide range of aquatic species in the Pinelands and elsewhere as habitat loss, alteration, and fragmentation increase with increasing development.


Subject(s)
Bass , Mycotoxins , Water Pollutants, Chemical , Animals , Bass/metabolism , Ecosystem , Environmental Monitoring , Mycotoxins/metabolism , New Jersey , United States , Wastewater , Water/metabolism , Water Pollutants, Chemical/analysis
17.
Environ Toxicol Chem ; 41(3): 781-791, 2022 03.
Article in English | MEDLINE | ID: mdl-35040181

ABSTRACT

Emerging infectious disease outbreaks are one of multiple stressors responsible for amphibian declines globally. In the northeastern United States, ranaviral diseases are prevalent in amphibians and other ectothermic species, but there is still uncertainty as to whether their presence is leading to population-level effects. Further, there is also uncertainty surrounding the potential interactions among disease infection prevalence in free-ranging animals and habitat degradation (co-occurrence of chemical stressors). The present study was designed to provide field-based estimates of the relationship between amphibian disease and chemical stressors. We visited 40 wetlands across three protected areas, estimated the prevalence of ranavirus among populations of larval wood frogs and spotted salamanders, and assessed chemical and biological stressors in wetland habitats and larval amphibians using a suite of selected bioassays, screening tools, and chemical analyses. Ranavirus was detected on larval amphibians from each protected area with an estimated occupancy ranging from 0.27 to 0.55. Considerable variation in ranavirus occupancy was also observed within and among each protected area. Of the stressors evaluated, ranavirus prevalence was strongly and positively related to concentrations of metalloestrogens (metals with the potential to bind to estrogen receptors) and total metals in wetland sediments and weakly and negatively related to total pesticide concentrations in larval amphibians. These results can be used by land managers to refine habitat assessments to include such environmental factors with the potential to influence disease susceptibility. Environ Toxicol Chem 2022;41:781-791. © 2022 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Subject(s)
Communicable Diseases, Emerging , Ranavirus , Amphibians , Animals , Larva , Prevalence , Ranidae , Wetlands
18.
Sci Total Environ ; 812: 152435, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34942241

ABSTRACT

Chemical contamination of riverine ecosystems is largely a result of urbanization, industrialization, and agricultural activities occurring on adjacent terrestrial landscapes. Land management activities (e.g., Best Management Practices) are an important tool used to reduce point and non-point sources of pollution. However, the ability to confidently make inferences about the efficacy of land management activities on reducing in-stream chemical concentrations is poorly understood. We estimated regional temporal trends and components of variation for commonly used herbicides (atrazine and metolachlor), total estrogenicity, and riverine sediment concentrations of total PCBs for rivers in the Chesapeake Bay Watershed, USA. We then used the estimated variance components to perform a power analysis and evaluated the statistical power to detect regional temporal trends under different monitoring scenarios. Scenarios included varying the magnitude of the annual contaminant decline, the number of sites sampled each year, the number of years sampled, and sampling frequency. Monitoring for short time periods (e.g., 5 years) was inadequate for detecting regional temporal trends, regardless of the number of sites sampled or the magnitude of the annual declines. Even when monitoring over a 20-year period, sampling a relatively large number of sites each year was required (e.g., >50 sites) to achieve adequate statistical power for smaller trend magnitudes (declines of 5-7%/year). Annual sampling frequency had little impact on power for any monitoring scenario. All sampling scenarios were underpowered for sediment total PCBs. Power was greatest for total estrogenicity, suggesting that this aggregate measure of estrogenic activity may be a useful indicator. This study provides information that can be used to help (1) guide the development of monitoring programs aimed at detecting regional declines in riverine chemical contaminant concentrations in response to land management actions, and (2) set expectations for the ability to detect changes over time.


Subject(s)
Bays , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Rivers , Water Pollutants, Chemical/analysis
19.
Environ Sci Technol ; 56(2): 1028-1040, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34967600

ABSTRACT

Process wastewaters from food, beverage, and feedstock facilities, although regulated, are an under-investigated environmental contaminant source. Food process wastewaters (FPWWs) from 23 facilities in 17 U.S. states were sampled and documented for a plethora of chemical and microbial contaminants. Of the 576 analyzed organics, 184 (32%) were detected at least once, with concentrations as large as 143 µg L-1 (6:2 fluorotelomer sulfonic acid), and as many as 47 were detected in a single FPWW sample. Cumulative per/polyfluoroalkyl substance concentrations up to 185 µg L-1 and large pesticide transformation product concentrations (e.g., methomyl oxime, 40 µg L-1; clothianidin TMG, 2.02 µg L-1) were observed. Despite 48% of FPWW undergoing disinfection treatment prior to discharge, bacteria resistant to third-generation antibiotics were found in each facility type, and multiple bacterial groups were detected in all samples, including total coliforms. The exposure-activity ratios and toxicity quotients exceeded 1.0 in 13 and 22% of samples, respectively, indicating potential biological effects and toxicity to vertebrates and invertebrates associated with the discharge of FPWW. Organic contaminant profiles of FPWW differed from previously reported contaminant profiles of municipal effluents and urban storm water, indicating that FPWW is another important source of chemical and microbial contaminant mixtures discharged into receiving surface waters.


Subject(s)
Rivers , Water Pollutants, Chemical , Animals , Beverages , Environmental Monitoring , Rivers/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/toxicity
20.
Int J Mol Sci ; 22(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34948092

ABSTRACT

Neonicotinoids (NEO) represent the main class of insecticides currently in use, with thiamethoxam (THX) and clothianidin (CLO) primarily applied agriculturally. With few comprehensive studies having been performed with non-target amphibians, the aim was to investigate potential biomarker responses along an adverse outcome pathway of NEO exposure, whereby data were collected on multiple biological hierarchies. Juvenile African clawed frogs, Xenopus laevis, were exposed to commercial formulations of THX and CLO at high (100 ppm) and low (20 ppm) concentrations of the active ingredient. Mortality, growth, development, liver metabolic enzyme activity, and gene expression endpoints were quantified. Tadpoles (n > 1000) from NF 47 through tail resorption stage (NF 66) were exposed to NEO or to NEO-free media treatments. Liver cell reductase activity and cytotoxicity were quantified by flow cytometry. Compared to control reference gene expressions, levels of expression for NEO receptor subunits, cell structure, function, and decontamination processes were measured by RT-qPCR by using liver and brain. Mortality in THX high was 21.5% compared to the control (9.1%); the metabolic conversion of THX to CLO may explain these results. The NF 57 control tadpoles were heavier, longer, and more developed than the others. The progression of development from NF 57-66 was reduced by THX low, and weight gain was impaired. Liver reductases were highest in the control (84.1%), with low NEO exhibiting the greatest reductions; the greatest cytotoxicity was seen with THX high. More transcriptional activity was noted in brains than in livers. Results affirm the utility of a study approach that considers multiple complexities in ecotoxicological studies with non-target amphibians, underscoring the need for simultaneously considering NEO concentration-response relationships with both whole-organism and biomarker endpoints.


Subject(s)
Brain/drug effects , Gene Expression , Guanidines/pharmacology , Liver/drug effects , Neonicotinoids/pharmacology , Oxidoreductases/analysis , Thiamethoxam/pharmacology , Thiazoles/pharmacology , Animals , Brain/metabolism , Guanidines/toxicity , Liver/enzymology , Liver/metabolism , Metamorphosis, Biological , Neonicotinoids/toxicity , Thiamethoxam/toxicity , Thiazoles/toxicity , Xenopus laevis/genetics , Xenopus laevis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...