Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
J Proteome Res ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498986

ABSTRACT

Caspase-9 is traditionally considered the initiator caspase of the intrinsic apoptotic pathway. In the past decade, however, other functions beyond initiation/execution of cell death have been described including cell type-dependent regulation of proliferation, differentiation/maturation, mitochondrial, and endosomal/lysosomal homeostasis. As previous studies revealed nonapoptotic functions of caspases in osteogenesis and bone homeostasis, this study was performed to identify proteins and pathways deregulated by knockout of caspase-9 in mouse MC3T3-E1 osteoblasts. Data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) proteomics was used to compare protein profiles of control and caspase-9 knockout cells. A total of 7669 protein groups were quantified, and 283 upregulated/141 downregulated protein groups were associated with the caspase-9 knockout phenotype. The deregulated proteins were mainly enriched for those associated with cell migration and motility and DNA replication/repair. Altered migration was confirmed in MC3T3-E1 cells with the genetic and pharmacological inhibition of caspase-9. ABHD2, an established regulator of cell migration, was identified as a possible substrate of caspase-9. We conclude that caspase-9 acts as a modulator of osteoblastic MC3T3-E1 cell migration and, therefore, may be involved in bone remodeling and fracture repair.

2.
J Cell Mol Med ; 27(1): 76-88, 2023 01.
Article in English | MEDLINE | ID: mdl-36523175

ABSTRACT

An acidic environment and hypoxia within the tumour are hallmarks of cancer that contribute to cell resistance to therapy. Deregulation of the PI3K/Akt pathway is common in colon cancer. Numerous Akt-targeted therapies are being developed, the activity of Akt-inhibitors is, however, strongly pH-dependent. Combination therapy thus represents an opportunity to increase their efficacy. In this study, the cytotoxicity of the Akt inhibitor perifosine and the Bcl-2/Bcl-xL inhibitor ABT-737 was tested in colon cancer HT-29 and HCT-116 cells cultured in monolayer or in the form of spheroids. The efficacy of single drugs and their combination was analysed in different tumour-specific environments including acidosis and hypoxia using a series of viability assays. Changes in protein content and distribution were determined by immunoblotting and a "peeling analysis" of immunohistochemical signals. While the cytotoxicity of single agents was influenced by the tumour-specific microenvironment, perifosine and ABT-737 in combination synergistically induced apoptosis in cells cultured in both 2D and 3D independently on pH and oxygen level. Thus, the combined therapy of perifosine and ABT-737 could be considered as a potential treatment strategy for colon cancer.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Phosphorylcholine , Humans , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor/drug effects , Colonic Neoplasms/drug therapy , Drug Synergism , Phosphatidylinositol 3-Kinases , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Tumor Microenvironment , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology
3.
Biomed Pharmacother ; 153: 113465, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076577

ABSTRACT

Drug efficacy determined in preclinical research is difficult to transfer to clinical practice. This is mainly due to the use of oversimplified models omitting the effect of the tumor microenvironment and the presence of various cell types participating in the formation of tumors in vivo. In this study, we used robust three-dimensional models including spheroids grown from colon cancer cell lines and organotypic cultures prepared from the colorectal carcinoma tissue to test novel therapeutic strategies. We developed a multi-modal approach combining brightfield and fluorescence microscopy for evaluating drug effects on organotypic cultures. Combined treatment with 5-fluorouracil and disulfiram/copper efficiently eliminated cancer cells in these 3D models. Moreover, disulfiram/copper down-regulated the expression of markers associated with 5-fluorouracil resistance, such as thymidylate synthase and CD133/CD44. Thus, we propose combined therapy of 5-fluorouracil and disulfiram/copper for further testing as a treatment for colorectal carcinoma. In addition, we show that organotypic cultures are suitable models for anti-cancer drug testing.


Subject(s)
Colorectal Neoplasms , Fluorouracil , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Copper/pharmacology , Copper/therapeutic use , Disulfiram/pharmacology , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Humans , Spheroids, Cellular/pathology , Tumor Microenvironment
5.
Sci Rep ; 12(1): 9583, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35688908

ABSTRACT

TACSTD2 encodes a transmembrane glycoprotein Trop2 commonly overexpressed in carcinomas. While the Trop2 protein was discovered already in 1981 and first antibody-drug conjugate targeting Trop2 were recently approved for cancer therapy, the physiological role of Trop2 is still not fully understood. In this article, we show that TACSTD2/Trop2 expression is evolutionarily conserved in lungs of various vertebrates. By analysis of publicly available transcriptomic data we demonstrate that TACSTD2 level consistently increases in lungs infected with miscellaneous, but mainly viral pathogens. Single cell and subpopulation based transcriptomic data revealed that the major source of TACSTD2 transcript are lung epithelial cells and their progenitors and that TACSTD2 is induced directly in lung epithelial cells following infection. Increase in TACSTD2 expression may represent a mechanism to maintain/restore epithelial barrier function and contribute to regeneration process in infected/damaged lungs.


Subject(s)
Antigens, Neoplasm , Cell Adhesion Molecules , Animals , Antigens, Neoplasm/metabolism , Cell Adhesion Molecules/metabolism , Epithelial Cells/metabolism , Lung/metabolism , Up-Regulation
6.
Clin Exp Metastasis ; 39(2): 375-390, 2022 04.
Article in English | MEDLINE | ID: mdl-34994868

ABSTRACT

The transcription factor c-Myb is an oncoprotein promoting cell proliferation and survival when aberrantly activated/expressed, thus contributing to malignant transformation. Overexpression of c-Myb has been found in leukemias, breast, colon and adenoid cystic carcinoma. Recent studies revealed its expression also in osteosarcoma cell lines and suggested its functional importance during bone development. However, the relevance of c-Myb in control of osteosarcoma progression remains unknown. A retrospective clinical study was carried out to assess a relationship between c-Myb expression in archival osteosarcoma tissues and prognosis in a cohort of high-grade osteosarcoma patients. In addition, MYB was depleted in metastatic osteosarcoma cell lines SAOS-2 LM5 and 143B and their growth, chemosensitivity, migration and metastatic activity were determined. Immunohistochemical analysis revealed that high c-Myb expression was significantly associated with poor overall survival in the cohort and metastatic progression in young patients. Increased level of c-Myb was detected in metastatic osteosarcoma cell lines and its depletion suppressed their growth, colony-forming capacity, migration and chemoresistance in vitro in a cell line-dependent manner. MYB knock-out resulted in reduced metastatic activity of both SAOS-2 LM5 and 143B cell lines in immunodeficient mice. Transcriptomic analysis revealed the c-Myb-driven functional programs enriched for genes involved in the regulation of cell growth, stress response, cell adhesion and cell differentiation/morphogenesis. Wnt signaling pathway was identified as c-Myb target in osteosarcoma cells. Taken together, we identified c-Myb as a negative prognostic factor in osteosarcoma and showed its involvement in the regulation of osteosarcoma cell growth, chemosensitivity, migration and metastatic activity.


Subject(s)
Bone Neoplasms , Osteosarcoma , Animals , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Mice , Osteosarcoma/pathology , Prognosis , Retrospective Studies , Wnt Signaling Pathway
7.
Neoplasia ; 23(3): 326-336, 2021 03.
Article in English | MEDLINE | ID: mdl-33621853

ABSTRACT

The transcription factor c-Myb can be involved in the activation of many genes with protumorigenic function; however, its role in breast cancer (BC) development is still under discussion. c-Myb is considered as a tumor-promoting factor in the early phases of BC, on the other hand, its expression in BC patients relates to a good prognosis. Previously, we have shown that c-Myb controls the capacity of BC cells to form spontaneous lung metastasis. Reduced seeding of BC cells to the lungs is linked to high expression of c-Myb and a decline in expression of a specific set of inflammatory genes. Here, we unraveled a c-Myb-IL1α-NF-κB signaling axis that takes place in tumor cells. We report that an overexpression of c-Myb interfered with the activity of NF-κB in several BC cell lines. We identified IL1α to be essential for this interference since it was abrogated in the IL1α-deficient cells. Overexpression of IL1α, as well as addition of recombinant IL1α protein, activated NF-κB signaling and restored expression of the inflammatory signature genes suppressed by c-Myb. The endogenous levels of c-Myb negatively correlated with IL1α on both transcriptional and protein levels across BC cell lines. We concluded that inhibition of IL1α expression by c-Myb reduces NF-κB activity and disconnects the inflammatory circuit, a potentially targetable mechanism to mimic the antimetastatic effect of c-Myb with therapeutic perspective.


Subject(s)
Breast Neoplasms/metabolism , Interleukin-1alpha/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-myb/metabolism , Signal Transduction , Amino Acid Sequence , Biomarkers, Tumor/metabolism , Breast Neoplasms/etiology , Breast Neoplasms/pathology , Cell Line, Tumor , Endoplasmic Reticulum Stress , Epithelial-Mesenchymal Transition , Female , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism
8.
Front Oncol ; 10: 581365, 2020.
Article in English | MEDLINE | ID: mdl-33344237

ABSTRACT

Colorectal cancer (CRC) is a disease with constantly increasing incidence and high mortality. The treatment efficacy could be curtailed by drug resistance resulting from poor drug penetration into tumor tissue and the tumor-specific microenvironment, such as hypoxia and acidosis. Furthermore, CRC tumors can be exposed to different pH depending on the position in the intestinal tract. CRC tumors often share upregulation of the Akt signaling pathway. In this study, we investigated the role of external pH in control of cytotoxicity of perifosine, the Akt signaling pathway inhibitor, to CRC cells using 2D and 3D tumor models. In 3D settings, we employed an innovative strategy for simultaneous detection of spatial drug distribution and biological markers of proliferation/apoptosis using a combination of mass spectrometry imaging and immunohistochemistry. In 3D conditions, low and heterogeneous penetration of perifosine into the inner parts of the spheroids was observed. The depth of penetration depended on the treatment duration but not on the external pH. However, pH alteration in the tumor microenvironment affected the distribution of proliferation- and apoptosis-specific markers in the perifosine-treated spheroid. Accurate co-registration of perifosine distribution and biological response in the same spheroid section revealed dynamic changes in apoptotic and proliferative markers occurring not only in the perifosine-exposed cells, but also in the perifosine-free regions. Cytotoxicity of perifosine to both 2D and 3D cultures decreased in an acidic environment below pH 6.7. External pH affects cytotoxicity of the other Akt inhibitor, MK-2206, in a similar way. Our innovative approach for accurate determination of drug efficiency in 3D tumor tissue revealed that cytotoxicity of Akt inhibitors to CRC cells is strongly dependent on pH of the tumor microenvironment. Therefore, the effect of pH should be considered during the design and pre-clinical/clinical testing of the Akt-targeted cancer therapy.

9.
Cancers (Basel) ; 12(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187148

ABSTRACT

Trophoblast cell surface antigen 2 (Trop2) is a widely expressed glycoprotein and an epithelial cell adhesion molecule (EpCAM) family member. Although initially identified as a transmembrane protein, other subcellular localizations and processed forms were described. Its congenital mutations cause a gelatinous drop-like corneal dystrophy, a disease characterized by loss of barrier function in corneal epithelial cells. Trop2 is considered a stem cell marker and its expression associates with regenerative capacity in various tissues. Trop2 overexpression was described in tumors of different origins; however, functional studies revealed both oncogenic and tumor suppressor roles. Nevertheless, therapeutic potential of Trop2 was recognized and clinical studies with drug-antibody conjugates have been initiated in various cancer types. One of these agents, sacituzumab govitecan, has been recently granted an accelerated approval for therapy of metastatic triple-negative breast cancer. In this article, we review the current knowledge about the yet controversial function of Trop2 in homeostasis and pathology.

10.
Anal Chem ; 91(21): 13475-13484, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31584797

ABSTRACT

In this paper, we present an easy-to-follow procedure for the analysis of tissue sections from 3D cell cultures (spheroids) by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) and laser scanning confocal microscopy (LSCM). MALDI MSI was chosen to detect the distribution of the drug of interest, while fluorescence immunohistochemistry (IHC) followed by LSCM was used to localize the cells featuring specific markers of viability, proliferation, apoptosis and metastasis. The overlay of the mass spectrometry (MS) and IHC spheroid images, typically without any morphological features, required fiducial-based coregistration. The MALDI MSI protocol was optimized in terms of fiducial composition and antigen epitope preservation to allow MALDI MSI to be performed and directly followed by IHC analysis on exactly the same spheroid section. Once MS and IHC images were coregistered, the quantification of the MS and IHC signals was performed by an algorithm evaluating signal intensities along equidistant layers from the spheroid boundary to its center. This accurate colocalization of MS and IHC signals showed limited penetration of the clinically tested drug perifosine into spheroids during a 24 h period, revealing the fraction of proliferating and promigratory/proinvasive cells present in the perifosine-free areas, decrease of their abundance in the perifosine-positive regions, and distinguishing between apoptosis resulting from hypoxia/nutrient deprivation and drug exposure.


Subject(s)
Fiducial Markers , Fluorescent Antibody Technique , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Cell Culture Techniques , HT29 Cells , Humans , Imaging, Three-Dimensional , Microscopy, Confocal
11.
Sci Rep ; 9(1): 11634, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406165

ABSTRACT

Tumor-associated macrophages (TAMs) are prominent components of tumor stroma that promotes tumorigenesis. Many soluble factors participate in the deleterious cross-talk between TAMs and transformed cells; however mechanisms how tumors orchestrate their production remain relatively unexplored. c-Myb is a transcription factor recently described as a negative regulator of a specific immune signature involved in breast cancer (BC) metastasis. Here we studied whether c-Myb expression is associated with an increased presence of TAMs in human breast tumors. Tumors with high frequency of c-Myb-positive cells have lower density of CD68-positive macrophages. The negative association is reflected by inverse correlation between MYB and CD68/CD163 markers at the mRNA levels in evaluated cohorts of BC patients from public databases, which was found also within the molecular subtypes. In addition, we identified potential MYB-regulated TAMs recruiting factors that in combination with MYB and CD163 provided a valuable clinical multigene predictor for BC relapse. We propose that identified transcription program running in tumor cells with high MYB expression and preventing macrophage accumulation may open new venues towards TAMs targeting and BC therapy.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic/immunology , Macrophages/immunology , Proto-Oncogene Proteins c-myb/metabolism , Tumor Microenvironment/immunology , Adult , Aged , Aged, 80 and over , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Breast/pathology , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Proliferation , Cohort Studies , Datasets as Topic , Female , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Macrophages/metabolism , Middle Aged , Prognosis , Receptors, Cell Surface/metabolism , Tumor Microenvironment/genetics
12.
J Cancer ; 10(6): 1393-1397, 2019.
Article in English | MEDLINE | ID: mdl-31031849

ABSTRACT

Colorectal cancer (CRC) represents a serious challenge for oncologists due to high incidence and large heterogeneity. Prognostic factors are needed to stratify patients according to risk of disease progression. In this study, we report that high expression of c-Myb protein, determined by immunohistochemistry (IHC), associates with better overall and disease-free survival (OS, DFS) in a cohort of 103 patients. Although MYB has been previously considered to act as oncogene in CRC, our further analysis of datasets deposited in PrognoScan and SurvExpress databases confirmed that high MYB expression largely associates with good prognosis in CRC. As therapies targeting c-Myb have been developed and tested in preclinical studies, we believe that further studies are needed for detailed understanding of c-Myb function in CRC, before the c-Myb-targeted therapy enters clinical trials.

13.
J Am Soc Mass Spectrom ; 30(2): 289-298, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30456596

ABSTRACT

The practicality of matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) applied to molecular imaging of biological tissues is limited by the analysis speed. Typically, a relatively low speed of stop-and-go micromotion of XY stages is considered as a factor substantially reducing the rate with which fresh sample material can be supplied to the laser spot. The sample scan rate in our laboratory-built high-throughput imaging TOF mass spectrometer was significantly improved through the use of a galvanometer-based optical scanner performing fast laser spot repositioning on a target plate. The optical system incorporated into the ion source of our MALDI TOF mass spectrometer allowed focusing the laser beam via a modified grid into a 10-µm round spot. This permitted the acquisition of high-resolution MS images with a well-defined pixel size at acquisition rates exceeding 100 pixel/s. The influence of selected parameters on the total MS imaging time is discussed. The new scanning technique was employed to display the distribution of an antitumor agent in 3D colorectal adenocarcinoma cell aggregates; a single MS image comprising 100 × 100 pixels with 10-µm lateral resolution was recorded in approximately 70 s. Graphical Abstract.


Subject(s)
Image Processing, Computer-Assisted/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Electrodes , Equipment Design , HT29 Cells , Humans , Lasers , Spheroids, Cellular/chemistry
14.
Metallomics ; 10(10): 1524-1531, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30238942

ABSTRACT

Wedelactone (WL), a plant polyphenolic derivative of coumestan, represents a promising anti-cancer agent. The underlying mechanisms of its action are not fully understood and appear to involve interplay with copper ions. Herein, we examined coordination and redox interactions of WL with Cu2+ in phosphate buffer (pH 7), and in two breast cancer cell lines. EPR, UV-Vis and fluorescence spectroscopy showed that WL and Cu2+ build a coordination complex with 2 : 1 stoichiometry and distorted tetrahedral geometry. WL showed strong fluorescence that was quenched by Cu2+. The sequestration of the intracellular copper pool with neocuproine led to a significant drop in the cytotoxic effects of WL, whereas the co-application of Cu2+ and WL and the formation of an extracellular complex suppressed both the cytotoxic effects of WL and copper loading. Fluorescence microscopy showed that WL is mainly localized in the cytosol and significantly less in the nuclei. WL fluorescence was stronger in cells pretreated with neocuproine, implying that the complex of WL and Cu2+ is formed inside the cells. WL caused a two-fold increase in the lysosomal level of copper as well as copper-dependent lysosome membrane permeabilization. On the other hand, the protective effects of overexpression of thioredoxin 1 imply that WL exerts the main oxidative impact inside the nucleus. The interactions of WL with copper may be essential for therapeutic performance and selectivity against cancer cells, taking into account that a number of cancer types, including breast cancer, exhibit increased intratumoral copper levels or altered copper distribution.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Coordination Complexes/metabolism , Copper/metabolism , Coumarins/pharmacology , Subcellular Fractions/metabolism , Apoptosis , Breast Neoplasms/metabolism , Female , Humans , Tumor Cells, Cultured
15.
Int J Med Microbiol ; 308(5): 498-504, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29735381

ABSTRACT

A set of 178 Escherichia coli isolates taken from patients with inflammatory bowel disease (IBD) was analyzed for bacteriocin production and tested for the prevalence of 30 bacteriocin and 22 virulence factor determinants. Additionally, E. coli phylogenetic groups were also determined. Pulsed-field gel electrophoresis (PFGE) was used for exclusion of clonal character of isolates. Results were compared to data from a previously published analysis of 1283 fecal commensal E. coli isolates. The frequency of bacteriocinogenic isolates (66.9%) was significantly higher in IBD E. coli compared to fecal commensal E. coli isolates (54.2%, p < 0.01). In the group of IBD E. coli isolates, a higher prevalence of determinants for group B colicins (i.e., colicins B, D, Ia, Ib, M, and 5/10) (p < 0.01), including a higher prevalence of the colicin B determinant (p < 0.01) was found. Virulence factor determinants encoding fimbriae (fimA, 91.0%; pap, 27.5%), cytotoxic necrotizing factor (cnf1, 11.2%), aerobactin synthesis (aer, 43.3%), and the locus associated with invasivity (ial, 9.0%) were more prevalent in IBD E. coli (p < 0.05 for all five determinants). E. coli isolates from IBD mucosal biopsies were more frequently bacteriocinogenic (84.6%, p < 0.01) compared to fecal IBD isolates and fecal commensal E. coli. PFGE analysis revealed clusters specific for IBD E. coli isolates (n = 11), for fecal isolates (n = 13), and clusters containing both IBD and fecal isolates (n = 10). ExPEC (Extraintestinal Pathogenic E. coli) virulence and colicin determinants appear to be important characteristics of IBD E. coli isolates, especially the E. coli isolates obtained directly from biopsy samples.


Subject(s)
Bacteriocins/metabolism , Colitis, Ulcerative/microbiology , Crohn Disease/microbiology , Escherichia coli/isolation & purification , Extraintestinal Pathogenic Escherichia coli/pathogenicity , Gastrointestinal Microbiome/physiology , Bacterial Toxins/genetics , Electrophoresis, Gel, Pulsed-Field , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Extraintestinal Pathogenic Escherichia coli/isolation & purification , Fimbriae Proteins/genetics , Humans , Oxo-Acid-Lyases/genetics
16.
Oncol Rep ; 38(4): 2535-2542, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28791403

ABSTRACT

Mutations and deletions of the tumor suppressor TP53 gene are the most frequent genetic alterations detected in human tumors, though they are rather less frequent in lymphomas. However, acquisition of the TP53 mutation was demonstrated to be one of the characteristic markers in mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL) and prognostic value of the TP53 status has been recognized for these diseases. We present the complex analysis of the TP53 aberrations in 57 cases of MCL and 131 cases of DLBCL. The TP53 status was determined by functional analyses in yeast (FASAY) followed by cDNA and gDNA sequencing. The level of the p53 protein was assessed by immunoblotting and loss of the TP53-specific locus 17p13.3 was detected by FISH. Altogether, we detected 13 TP53 mutations among MCL cases (22.8%) and 29 TP53 mutations in 26 from 131 DLBCL cases (19.8%). The ratio of missense TP53 mutations was 76.9% in MCL and 82.8% in DLBCL. The frequency of TP53 locus deletion was rather low in both diseases, reaching 9.3% in MCL and 15.3% in DLBCL. The presence of TP53 mutation was associated with shorter overall survival (OS) and progression-free survival (PFS) in MCL. Among DLBCL cases, the TP53 mutations shortened both OS and PFS of patients treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone) and decreased both OS and PFS of patients with secondary DLBCL disease.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Mantle-Cell/drug therapy , Prognosis , Tumor Suppressor Protein p53/genetics , Adult , Aged , Aged, 80 and over , Cyclophosphamide/administration & dosage , Disease-Free Survival , Doxorubicin/administration & dosage , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Kaplan-Meier Estimate , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Male , Middle Aged , Mutation , Prednisone/administration & dosage , Rituximab/administration & dosage , Vincristine/administration & dosage , Yeasts/genetics
17.
Genome Announc ; 5(19)2017 May 11.
Article in English | MEDLINE | ID: mdl-28495765

ABSTRACT

A temperate phage, SEN8, having a broad activity against pathogenic Salmonella serovars, was isolated from Salmonella enterica subsp. salamae strain Sen8. The complete genome sequence of phage SEN8 was determined (35,203 bp) and showed relatedness to P2-like phages (Salmonella phages Fels-2 and RE-2010).

18.
J Cell Mol Med ; 21(9): 1859-1869, 2017 09.
Article in English | MEDLINE | ID: mdl-28244639

ABSTRACT

Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis-activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti-cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down-regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells.


Subject(s)
Molybdenum/pharmacology , Neuroblastoma/enzymology , Neuroblastoma/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Animals , Cell Line, Tumor , Cell Respiration/drug effects , Down-Regulation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Glucose/metabolism , Humans , Lactic Acid/biosynthesis , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Neuroblastoma/metabolism , Neurons/drug effects , Neurons/metabolism , Oxidative Phosphorylation/drug effects , Oxygen Consumption/drug effects , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism
19.
Int J Mol Sci ; 18(4)2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28353647

ABSTRACT

Wedelolactone is a multi-target natural plant coumestan exhibiting cytotoxicity towards cancer cells. Although several molecular targets of wedelolactone have been recognized, the molecular mechanism of its cytotoxicity has not yet been elucidated. In this study, we show that wedelolactone acts as an inhibitor of chymotrypsin-like, trypsin-like, and caspase-like activities of proteasome in breast cancer cells. The proteasome inhibitory effect of wedelolactone was documented by (i) reduced cleavage of fluorogenic proteasome substrates; (ii) accumulation of polyubiquitinated proteins and proteins with rapid turnover in tumor cells; and (iii) molecular docking of wedelolactone into the active sites of proteasome catalytic subunits. Inhibition of proteasome by wedelolactone was independent on its ability to induce reactive oxygen species production by redox cycling with copper ions, suggesting that wedelolactone acts as copper-independent proteasome inhibitor. We conclude that the cytotoxicity of wedelolactone to breast cancer cells is partially mediated by targeting proteasomal protein degradation pathway. Understanding the structural basis for inhibitory mode of wedelolactone might help to open up new avenues for design of novel compounds efficiently inhibiting cancer cells.


Subject(s)
Coumarins/pharmacology , Proteasome Inhibitors/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Copper/metabolism , Coumarins/chemistry , Coumarins/toxicity , Humans , Molecular Docking Simulation , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/toxicity , Protein Binding , Proteolysis , Reactive Oxygen Species/metabolism , Ubiquitination
20.
PLoS One ; 12(1): e0170734, 2017.
Article in English | MEDLINE | ID: mdl-28118395

ABSTRACT

Forty strains of Salmonella enterica (S. enterica) subspecies salamae (II), arizonae (IIIa), diarizonae (IIIb), and houtenae (IV) were isolated from human or environmental samples and tested for bacteriophage production. Production of bacteriophages was observed in 15 S. enterica strains (37.5%) belonging to either the subspecies salamae (8 strains) or diarizonae (7 strains). Activity of phages was tested against 52 pathogenic S. enterica subsp. enterica isolates and showed that phages produced by subsp. salamae had broader activity against pathogenic salmonellae compared to phages from the subsp. diarizonae. All 15 phages were analyzed using PCR amplification of phage-specific regions and 9 different amplification profiles were identified. Five phages (SEN1, SEN4, SEN5, SEN22, and SEN34) were completely sequenced and classified as temperate phages. Phages SEN4 and SEN5 were genetically identical, thus representing a single phage type (i.e. SEN4/5). SEN1 and SEN4/5 fit into the group of P2-like phages, while the SEN22 phage showed sequence relatedness to P22-like phages. Interestingly, while phage SEN34 was genetically distantly related to Lambda-like phages (Siphoviridae), it had the morphology of the Myoviridae family. Based on sequence analysis and electron microscopy, phages SEN1 and SEN4/5 were members of the Myoviridae family and phage SEN22 belonged to the Podoviridae family.


Subject(s)
Salmonella Phages/isolation & purification , Salmonella enterica/virology , Czechoslovakia , DNA, Viral/genetics , DNA, Viral/isolation & purification , Environmental Microbiology , Genome, Viral , Lysogeny , Microscopy, Electron , Phylogeny , Salmonella Infections/microbiology , Salmonella Phages/classification , Salmonella Phages/physiology , Salmonella Phages/ultrastructure , Salmonella enterica/isolation & purification , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Species Specificity , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...