Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Immunother Cancer ; 10(11)2022 11.
Article in English | MEDLINE | ID: mdl-36323431

ABSTRACT

BACKGROUND: Indications with poor T-cell infiltration or deficiencies in T-cell priming and associated unresponsiveness to established immunotherapies represent an unmet medical need in oncology. CD40-targeting therapies designed to enhance antigen presentation, generate new tumor-specific T cells, and activate tumor-infiltrating myeloid cells to remodel the tumor microenvironment, represent a promising opportunity to meet this need. In this study, we present the first in vivo data supporting a role for tumor-associated antigen (TAA)-mediated uptake and cross-presentation of tumor antigens to enhance tumor-specific T-cell priming using CD40×TAA bispecific antibodies, a concept we named Neo-X-Prime. METHODS: Bispecific antibodies targeting CD40 and either of two cell-surface expressed TAA, carcinoembryonic antigen-related cell adhesion molecule 5 (CEA) or epithelial cell adhesion molecule (EpCAM), were developed in a tetravalent format. TAA-conditional CD40 agonism, activation of tumor-infiltrating immune cells, antitumor efficacy and the role of delivery of tumor-derived material such as extracellular vesicles, tumor debris and exosomes by the CD40×TAA bispecific antibodies were demonstrated in vitro using primary human and murine cells and in vivo using human CD40 transgenic mice with different tumor models. RESULTS: The results showed that the CD40×TAA bispecific antibodies induced TAA-conditional CD40 activation both in vitro and in vivo. Further, it was demonstrated in vitro that they induced clustering of tumor debris and CD40-expressing cells in a dose-dependent manner and superior T-cell priming when added to dendritic cells (DC), ovalbumin (OVA)-specific T cells and OVA-containing tumor debris or exosomes. The antitumor activity of the Neo-X-Prime bispecific antibodies was demonstrated to be significantly superior to the monospecific CD40 antibody, and the resulting T-cell dependent antitumor immunity was directed to tumor antigens other than the TAA used for targeting (EpCAM). CONCLUSIONS: The data presented herein support the hypothesis that CD40×TAA bispecific antibodies can engage tumor-derived vesicles containing tumor neoantigens to myeloid cells such as DCs resulting in an improved DC-mediated cross-priming of tumor-specific CD8+ T cells. Thus, this principle may offer therapeutics strategies to enhance tumor-specific T-cell immunity and associated clinical benefit in indications characterized by poor T-cell infiltration or deficiencies in T-cell priming.


Subject(s)
Antibodies, Bispecific , Cross-Priming , Humans , Mice , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , CD8-Positive T-Lymphocytes , Epithelial Cell Adhesion Molecule/metabolism , Dendritic Cells , CD40 Antigens/metabolism , Antigens, Neoplasm
2.
J Immunother Cancer ; 7(1): 103, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30975201

ABSTRACT

BACKGROUND: The CTLA-4 blocking antibody ipilimumab has demonstrated substantial and durable effects in patients with melanoma. While CTLA-4 therapy, both as monotherapy and in combination with PD-1 targeting therapies, has great potential in many indications, the toxicities of the current treatment regimens may limit their use. Thus, there is a medical need for new CTLA-4 targeting therapies with improved benefit-risk profile. METHODS: ATOR-1015 is a human CTLA-4 x OX40 targeting IgG1 bispecific antibody generated by linking an optimized version of the Ig-like V-type domain of human CD86, a natural CTLA-4 ligand, to an agonistic OX40 antibody. In vitro evaluation of T-cell activation and T regulatory cell (Treg) depletion was performed using purified cells from healthy human donors or cell lines. In vivo anti-tumor responses were studied using human OX40 transgenic (knock-in) mice with established syngeneic tumors. Tumors and spleens from treated mice were analyzed for CD8+ T cell and Treg frequencies, T-cell activation markers and tumor localization using flow cytometry. RESULTS: ATOR-1015 induces T-cell activation and Treg depletion in vitro. Treatment with ATOR-1015 reduces tumor growth and improves survival in several syngeneic tumor models, including bladder, colon and pancreas cancer models. It is further demonstrated that ATOR-1015 induces tumor-specific and long-term immunological memory and enhances the response to PD-1 inhibition. Moreover, ATOR-1015 localizes to the tumor area where it reduces the frequency of Tregs and increases the number and activation of CD8+ T cells. CONCLUSIONS: By targeting CTLA-4 and OX40 simultaneously, ATOR-1015 is directed to the tumor area where it induces enhanced immune activation, and thus has the potential to be a next generation CTLA-4 targeting therapy with improved clinical efficacy and reduced toxicity. ATOR-1015 is also expected to act synergistically with anti-PD-1/PD-L1 therapy. The pre-clinical data support clinical development of ATOR-1015, and a first-in-human trial has started (NCT03782467).


Subject(s)
Antibodies, Bispecific/pharmacology , CTLA-4 Antigen/antagonists & inhibitors , Receptors, OX40/agonists , Urinary Bladder Neoplasms/drug therapy , Animals , Antibodies, Bispecific/therapeutic use , CHO Cells , CTLA-4 Antigen/immunology , Cell Line, Tumor/transplantation , Cricetulus , Disease Models, Animal , Drug Screening Assays, Antitumor , Female , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Primary Cell Culture , Proof of Concept Study , Receptors, OX40/genetics , Receptors, OX40/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL