Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(19): 14557-14586, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34581584

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease. Current treatments only slow down disease progression, making new therapeutic strategies compelling. Increasing evidence suggests that S1P2 antagonists could be effective agents against fibrotic diseases. Our compound collection was mined for molecules possessing substructure features associated with S1P2 activity. The weakly potent indole hit 6 evolved into a potent phthalazone series, bearing a carboxylic acid, with the aid of a homology model. Suboptimal pharmacokinetics of a benzimidazole subseries were improved by modifications targeting potential interactions with transporters, based on concepts deriving from the extended clearance classification system (ECCS). Scaffold hopping, as a part of a chemical enablement strategy, permitted the rapid exploration of the position adjacent to the carboxylic acid. Compound 38, with good pharmacokinetics and in vitro potency, was efficacious at 10 mg/kg BID in three different in vivo mouse models of fibrotic diseases in a therapeutic setting.


Subject(s)
Carboxylic Acids/pharmacology , Drug Discovery , Idiopathic Pulmonary Fibrosis/drug therapy , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Carboxylic Acids/administration & dosage , Disease Models, Animal , Humans , Mice
2.
J Med Chem ; 53(21): 7778-95, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-20942472

ABSTRACT

Histamine H(1) and serotonin 5-HT(2A) receptors mediate two different mechanisms involved in sleep regulation: H(1) antagonists are sleep inducers, while 5-HT(2A) antagonists are sleep maintainers. Starting from 9'a, a novel spirotetracyclic compound endowed with good H(1)/5-HT(2A) potency but poor selectivity, very high Cli, and a poor P450 profile, a specific optimization strategy was set up. In particular, we investigated the possibility of introducing appropriate amino acid moieties to optimize the developability profile of the series. Following this zwitterionic approach, we were able to identify several advanced leads (51, 65, and 73) with potent dual H(1)/5-HT(2A) activity and appropriate developability profiles. These compounds exhibited efficacy as hypnotic agents in a rat telemetric sleep model with minimal effective doses in the range 3-10 mg/kg po.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Histamine H1 Antagonists/chemical synthesis , Hypnotics and Sedatives/chemical synthesis , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin 5-HT2 Receptor Antagonists/chemical synthesis , Sleep/drug effects , Spiro Compounds/chemical synthesis , Animals , Biological Availability , Brain/metabolism , Cell Line , Cerebral Cortex/metabolism , Cricetinae , Cricetulus , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Histamine H1 Antagonists/chemistry , Histamine H1 Antagonists/pharmacology , Humans , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/pharmacology , Male , Microsomes, Liver/metabolism , Radioligand Assay , Rats , Rats, Sprague-Dawley , Serotonin 5-HT2 Receptor Antagonists/chemistry , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Sleep Wake Disorders/drug therapy , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...