Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Nucleic Acids ; 35(1): 102112, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38292874

ABSTRACT

Chronic hepatitis B virus (HBV) infection remains a global health problem due to the lack of treatments that prevent viral rebound from HBV covalently closed circular (ccc)DNA. In addition, HBV DNA integrates in the human genome, serving as a source of hepatitis B surface antigen (HBsAg) expression, which impairs anti-HBV immune responses. Cytosine base editors (CBEs) enable precise conversion of a cytosine into a thymine within DNA. In this study, CBEs were used to introduce stop codons in HBV genes, HBs and Precore. Transfection with mRNA encoding a CBE and a combination of two guide RNAs led to robust cccDNA editing and sustained reduction of the viral markers in HBV-infected HepG2-NTCP cells and primary human hepatocytes. Furthermore, base editing efficiently reduced HBsAg expression from HBV sequences integrated within the genome of the PLC/PRF/5 and HepG2.2.15 cell lines. Finally, in the HBV minicircle mouse model, using lipid nanoparticulate delivery, we demonstrated antiviral efficacy of the base editing approach with a >3log10 reduction in serum HBV DNA and >2log10 reduction in HBsAg, and 4/5 mice showing HBsAg loss. Combined, these data indicate that base editing can introduce mutations in both cccDNA and integrated HBV DNA, abrogating HBV replication and silencing viral protein expression.

2.
Nat Nanotechnol ; 16(6): 725-733, 2021 06.
Article in English | MEDLINE | ID: mdl-33767382

ABSTRACT

Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib-glycyrrhizin and terbinafine-taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics.


Subject(s)
Drug Carriers/chemistry , High-Throughput Screening Assays/methods , Nanoparticles/chemistry , Sorafenib/pharmacology , Terbinafine/pharmacology , Animals , Candida albicans/drug effects , Computer Simulation , Drug Carriers/chemical synthesis , Drug Design , Drug Evaluation, Preclinical/methods , Dynamic Light Scattering , Excipients/chemistry , Female , Glycyrrhizic Acid/chemistry , Humans , Machine Learning , Mice, Inbred Strains , Skin Absorption , Sorafenib/chemistry , Sorafenib/pharmacokinetics , Taurocholic Acid/chemistry , Terbinafine/chemistry , Tissue Distribution , Xenograft Model Antitumor Assays
3.
Sci Rep ; 10(1): 15473, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968084

ABSTRACT

Due to breakthroughs in RNAi and genome editing methods in the past decade, it is now easier than ever to study fine details of protein synthesis in animal models. However, most of our understanding of translation comes from unicellular organisms and cultured mammalian cells. In this study, we demonstrate the feasibility of perturbing protein synthesis in a mouse liver by targeting translation elongation factor 2 (eEF2) with RNAi. We were able to achieve over 90% knockdown efficacy and maintain it for 2 weeks effectively slowing down the rate of translation elongation. As the total protein yield declined, both proteomics and ribosome profiling assays showed robust translational upregulation of ribosomal proteins relative to other proteins. Although all these genes bear the TOP regulatory motif, the branch of the mTOR pathway responsible for translation regulation was not activated. Paradoxically, coordinated translational upregulation of ribosomal proteins only occurred in the liver but not in murine cell culture. Thus, the upregulation of ribosomal transcripts likely occurred via passive mTOR-independent mechanisms. Impaired elongation sequesters ribosomes on mRNA and creates a shortage of free ribosomes. This leads to preferential translation of transcripts with high initiation rates such as ribosomal proteins. Furthermore, severe eEF2 shortage reduces the negative impact of positively charged amino acids frequent in ribosomal proteins on ribosome progression.


Subject(s)
Elongation Factor 2 Kinase/metabolism , Liver/metabolism , RNA, Small Interfering/metabolism , Ribosomal Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Cycle , Female , Gene Knockdown Techniques , Mice , Protein Biosynthesis , Proteome/metabolism , RNA, Messenger/metabolism , Up-Regulation
4.
Mol Ther Nucleic Acids ; 19: 252-266, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-31855834

ABSTRACT

Translation is an essential biological process, and dysregulation is associated with a range of diseases including ribosomopathies, diabetes, and cancer. Here, we examine translation dysregulation in vivo using RNAi to knock down the m-subunit of the translation initiation factor eIF3 in the mouse liver. Transcriptome sequencing, ribosome profiling, whole proteome, and phosphoproteome analyses show that eIF3m deficiency leads to the transcriptional response and changes in cellular translation that yield few detectable differences in the translation of particular mRNAs. The transcriptional response fell into two main categories: ribosome biogenesis (increased transcription of ribosomal proteins) and cell metabolism (alterations in lipid, amino acid, nucleic acid, and drug metabolism). Analysis of ribosome biogenesis reveals inhibition of rRNA processing, highlighting decoupling of rRNA synthesis and ribosomal protein gene transcription in response to eIF3m knockdown. Interestingly, a similar reduction in eIF3m protein levels is associated with induction of the mTOR pathway in vitro but not in vivo. Overall, this work highlights the utility of a RNAi-based in vivo approach for studying the regulation of mammalian translation in vivo.

5.
Biochimie ; 131: 159-172, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27318030

ABSTRACT

Long non-coding RNAs constitute the most abundant part of the transcribed mammalian genome. lncRNAs affect all essential processes in the living cell including transcription, splicing, translation, replication, shaping of chromatin and post translational modification of proteins. Alterations in lncRNA expression have been linked to a number of diseases; thus, modulation of lncRNA expression holds a huge potential for gene-based therapy. In this review we summarize published data about lncRNAs in the context of hepatic carcinogenesis and liver fibrosis, and the corresponding potential targets for gene therapy. Recent advancements in targeted delivery to the liver made RNA interference an invaluable tool to decipher hepatic lncRNA function and to develop lncRNA-oriented therapies for liver-involved diseases in the future. Different approaches for RNA delivery that can be used for functional studies in the lab and for clinical lncRNA based applications are critically discussed in this review.


Subject(s)
Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Liver/metabolism , RNA, Long Noncoding/genetics , Animals , Biomedical Research/methods , Gene Expression Regulation , Genetic Therapy/methods , Humans , Liver/pathology , Liver Cirrhosis/therapy , Liver Neoplasms/therapy , RNA Interference
6.
BMC Genomics ; 14: 837, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24279325

ABSTRACT

BACKGROUND: Hansenula polymorpha DL1 is a methylotrophic yeast, widely used in fundamental studies of methanol metabolism, peroxisome biogenesis and function, and also as a microbial cell factory for production of recombinant proteins and metabolic engineering towards the goal of high temperature ethanol production. RESULTS: We have sequenced the 9 Mbp H. polymorpha DL1 genome and performed whole-genome analysis for the H. polymorpha transcriptome obtained from both methanol- and glucose-grown cells. RNA-seq analysis revealed the complex and dynamic character of the H. polymorpha transcriptome under the two studied conditions, identified abundant and highly unregulated expression of 40% of the genome in methanol grown cells, and revealed alternative splicing events. We have identified subtelomerically biased protein families in H. polymorpha, clusters of LTR elements at G + C-poor chromosomal loci in the middle of each of the seven H. polymorpha chromosomes, and established the evolutionary position of H. polymorpha DL1 within a separate yeast clade together with the methylotrophic yeast Pichia pastoris and the non-methylotrophic yeast Dekkera bruxellensis. Intergenome comparisons uncovered extensive gene order reshuffling between the three yeast genomes. Phylogenetic analyses enabled us to reveal patterns of evolution of methylotrophy in yeasts and filamentous fungi. CONCLUSIONS: Our results open new opportunities for in-depth understanding of many aspects of H. polymorpha life cycle, physiology and metabolism as well as genome evolution in methylotrophic yeasts and may lead to novel improvements toward the application of H. polymorpha DL-1 as a microbial cell factory.


Subject(s)
Genome, Fungal , Saccharomycetales/genetics , Alternative Splicing , Antioxidants/metabolism , Chromosomes, Fungal , Cluster Analysis , Codon , DNA Transposable Elements , Evolution, Molecular , Fatty Acids/metabolism , Gene Duplication , Gene Expression Profiling , Genes, Fungal , Glucose/metabolism , Metabolic Networks and Pathways , Methanol/metabolism , Molecular Sequence Annotation , Multigene Family , Oxidation-Reduction , Pentose Phosphate Pathway , Peroxisomes/metabolism , Phylogeny , RNA Splice Sites , Saccharomycetales/classification , Saccharomycetales/metabolism , Sequence Analysis, DNA , Telomere/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
7.
RNA ; 19(11): 1563-74, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24046481

ABSTRACT

Telomerase, a ribonucleoprotein, is responsible for the maintenance of eukaryotic genome integrity by replicating the ends of chromosomes. The core enzyme comprises the conserved protein TERT and an RNA subunit (TER) that, in contrast, displays large variations in size and structure. Here, we report the identification of the telomerase RNA from thermotolerant yeast Hansenula polymorpha (HpTER) and describe its structural features. We show further that the H. polymorpha telomerase reverse transcribes the template beyond the predicted boundary and adds a nontelomeric dT in vitro. Sequencing of the chromosomal ends revealed that this nucleotide is specifically present as a terminal nucleotide at the 3' end of telomeres. Mutational analysis of HpTER confirmed that the incorporation of dT functions to limit telomere length in this species.


Subject(s)
Pichia/genetics , RNA/genetics , Telomerase/genetics , Telomere Homeostasis , Base Sequence , Gene Knockout Techniques , Molecular Sequence Data , Nucleic Acid Conformation , RNA/chemistry , RNA/metabolism , RNA, Fungal/chemistry , RNA, Fungal/genetics , RNA, Fungal/metabolism , Sequence Analysis, RNA , Telomerase/chemistry , Telomerase/metabolism , Thymine
SELECTION OF CITATIONS
SEARCH DETAIL
...