Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
New Phytol ; 242(2): 700-716, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382573

ABSTRACT

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Subject(s)
Climate , Orchidaceae , Australia , Phylogeny , Phylogeography , Orchidaceae/genetics
2.
Mol Phylogenet Evol ; 186: 107858, 2023 09.
Article in English | MEDLINE | ID: mdl-37329930

ABSTRACT

Genetic data shows that cryptic hybrids are more common than previously thought and that hybridization and introgression are widespread processes. Regardless, studies on hybridization are scarce for the highly speciose Bulbophyllum. The genus presents more than 2,200 species and many examples of recent radiations, in which hybridization is expected to be frequent. Currently, only four natural Bulbophyllum hybrids are recognized, all of them recently described based on morphological evidence. Here we test whether genomic evidence supports the hybrid status of two Neotropical Bulbophyllum species, while also evaluating the impact of this phenomenon on the genomes of the putative parental species. We also assess if there is evidence of hybridization among B. involutum and B. exaltatum, sister species that diverged recently. We leverage the power of next-generation sequence data, associated with model-based analysis for three systems putatively constituted by two parental species and one hybrid. All taxa belong to the Neotropical B. sect. Didactyle clade. We found evidence of hybridization in all studied systems. Despite the occurrence of hybridization, there are no signs of backcrossing. Because of the high propensity of hybridization across many taxa, the common occurrence of hybridization during the evolutionary history of B. sect. Didactyle means it is time to account for and examine its evolutionary role in these orchids.


Subject(s)
Orchidaceae , Phylogeny , Hybridization, Genetic , Biological Evolution , Nucleic Acid Hybridization
3.
Evolution ; 77(4): 946-958, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36688535

ABSTRACT

Mountains play a crucial role in the origin and maintenance of Neotropical biodiversity, but there are still unanswered questions about the diversification of the campos rupestres (CR), an herbaceous-shrubby sky-island vegetation in eastern South America. For orchids distributed across this disjunct rock habitat, difficulties with distinguishing morphological taxa add an additional challenge to disentangling the history of divergence. Here, we combined the power of ddRAD genomic data with broad sampling of Bulbophyllum sect. Didactyle (Orchidaceae), across the CR and other Neotropical outcrops, to estimate evolutionary relationships and evaluate the biogeography of the group's diversification. Although genetic lineages generally align with geographic disjunctions, we also observe distantly related lineages within some previously recognized species. For such taxa, their lack of monophyly and a shared regional divergence pattern suggests a complex history that may include unrecognized diversity. When viewed through the lens of morphological variability, our study raises intriguing questions about the persistence and permeability of species barriers among orchid populations. These results, in addition to the recency of the divergence history of B. sect. Didactyle, provide insights about hypothesized community level vs. species-specific paths of diversification across the Neotropical sky-islands of the CR.


Subject(s)
Biological Evolution , Orchidaceae , Phylogeny , Phylogeography , Brazil , Biodiversity , Orchidaceae/genetics , Orchidaceae/anatomy & histology
4.
PLoS One ; 16(8): e0256126, 2021.
Article in English | MEDLINE | ID: mdl-34449781

ABSTRACT

We present the first comparative plastome study of Pleurothallidinae with analyses of structural and molecular characteristics and identification of the ten most-variable regions to be incorporated in future phylogenetic studies. We sequenced complete plastomes of eight species in the subtribe and compared phylogenetic results of these to parallel analyses of their nuclear ribosomal DNA operon (26S, 18S, and 5.8S plus associated spacers) and partial mitochondrial genome sequences (29-38 genes and partial introns). These plastomes have the typical quadripartite structure for which gene content is similar to those of other orchids, with variation only in the composition of the ndh genes. The independent loss of ndh genes had an impact on which genes border the inverted repeats and thus the size of the small single-copy region, leading to variation in overall plastome length. Analyses of 68 coding sequences indicated the same pattern of codon usage as in other orchids, and 13 protein-coding genes under positive selection were detected. Also, we identified 62 polymorphic microsatellite loci and ten highly variable regions, for which we designed primers. Phylogenomic analyses showed that the top ten mutational hotspots represent well the phylogenetic relationships found with whole plastome sequences. However, strongly supported incongruence was observed among plastid, nuclear ribosomal DNA operon, and mitochondrial DNA trees, indicating possible occurrence of incomplete lineage sorting and/or introgressive hybridization. Despite the incongruence, the mtDNA tree retrieved some clades found in other analyses. These results, together with performance in recent studies, support a future role for mitochondrial markers in Pleurothallidinae phylogenetics.


Subject(s)
Genome, Plastid/genetics , Orchidaceae/genetics , Plastids/genetics , Base Sequence/genetics , Cell Nucleus/genetics , DNA, Ribosomal/genetics , Evolution, Molecular , Orchidaceae/metabolism , Phylogeny
5.
PLoS One ; 15(12): e0243297, 2020.
Article in English | MEDLINE | ID: mdl-33315920

ABSTRACT

The morphological and morphometric characters of seeds belonging to 11 species of the subtribe Pleurothallidinae using light and scanning electron microscopy were studied to understand the in vitro germination process. Qualitative data (color, shape, ornamentation) and quantitative ones were also evaluated in seeds and embryos (length, width, volume and air space percentage between the integument and the embryo). The viability of the seeds was evaluated by in vitro germination in woody plant medium (WPM), and by analysis of the developmental stages of protocorms until seedling formation (two to 24 weeks). Morphometric data showed variations within the genus Acianthera and between species of different genera. The best germination and protocorm formation responses occurred with Acianthera prolifera (92%) and Acianthera ochreata (86%), with the formation of seedlings after 12 and 16 weeks of sowing, respectively. The seeds and embryos of A. prolifera and A. ochreata were larger (length, width, and volume) with a structural polarity that may have facilitated their germination comparing to others studied species. Other characteristics of A. prolifera seeds that may have contributed to these results include the presence of a thin testa without ornamentation and a suspensor. The protocorms of Anathalis obovata, Dryadella liliputiana, and Octomeria gracillis developed slowly in the WPM, not reaching the seedling stage in 24 weeks of cultivation. This morphological and morphometric study contributes to the understanding of asymbiotic germination of some micro-orchid species.


Subject(s)
Germination/physiology , Orchidaceae/growth & development , Seedlings/growth & development , Seeds/metabolism , Orchidaceae/classification
6.
Front Plant Sci ; 11: 799, 2020.
Article in English | MEDLINE | ID: mdl-32719690

ABSTRACT

Pantropical Bulbophyllum, with ∼2,200 species, is one of the largest genera in Orchidaceae. Although phylogenetics and taxonomy of the ∼60 American species in the genus are generally well understood, some species complexes need more study to clearly delimit their component species and provide information about their evolutionary history. Previous research has suggested that the plastid genome includes phylogenetic markers capable of providing resolution at low taxonomic levels, and thus it could be an effective tool if these divergent regions can be identified. In this study, we sequenced the complete plastid genome of eight Bulbophyllum species, representing five of six Neotropical taxonomic sections. All plastomes conserve the typical quadripartite structure, and, although the general structure of plastid genomes is conserved, differences in ndh-gene composition and total length were detected. Total length was determined by contraction and expansion of the small single-copy region, a result of an independent loss of the seven ndh genes. Selection analyses indicated that protein-coding genes were generally well conserved, but in four genes, we identified 95 putative sites under positive selection. Furthermore, a total of 54 polymorphic simple sequence repeats were identified, for which we developed amplification primers. In addition, we propose 10 regions with potential to improve phylogenetic analyses of Neotropical Bulbophyllum species.

7.
PLoS One ; 15(1): e0227991, 2020.
Article in English | MEDLINE | ID: mdl-31990943

ABSTRACT

This study reports complete plastome sequences for six species of Neotropical Cranichideae and focuses on identification of the most variable regions (hotspots) in this group of orchids. These structure of these six plastomes is relatively conserved, exhibiting lengths ranging between 142,599 to 154,562 bp with 36.7% GC on average and exhibiting typical quadripartite arrangement (LSC, SSC and two IRs). Variation detected in the LSC/IR and SSC/IR junctions is explained by the loss of ndhF and ycf1 length variation. For the two genera of epiphytic clade in Spiranthinae, almost whole sets of the ndh-gene family were missing. Eight mutation hotspots were identified based on nucleotide diversity, sequence variability and parsimony-informative sites. Three of them (rps16-trnQ, trnT-trnL, rpl32-trnL) seem to be universal hotspots in the family, and the other five (trnG-trnR, trnR-atpA, trnP-psaJ, rpl32-infA, and rps15-ycf1) are described for the first time as orchid molecular hotspots. These regions have much more variation than all those used previously in phylogenetics of the group and offer useful plastid markers for phylogenetic, barcoding and population genetic studies. The use of whole plastomes or exclusive no-gap matrices also positioned with high support the holomycotrophic Rhizanthella among Orchidoideae plastomes in model-based analyses, showing the utility of plastomes for phylogenetic placement of this unusual genus.


Subject(s)
Gene Expression Regulation, Plant , Genetic Variation , Genome , Orchidaceae/genetics , Phylogeny , Plastids/genetics , Base Composition , Brazil , Chromosome Mapping , DNA Barcoding, Taxonomic/methods , Gene Ontology , Molecular Sequence Annotation , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Orchidaceae/classification , Orchidaceae/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
8.
An Acad Bras Cienc ; 91(3): e20180439, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31531531

ABSTRACT

The orchid seed banks of Atlantic Forest may be considered a key strategy for the conservation of species threatened with extinction by indiscriminate collection or habitat destruction. The aim of this study was to evaluate the seed viability, to choose the best culture medium for the asymbiotic germination and evaluate germination, after storage for different periods and temperatures for the Brazilian native orchids: Gomesa praetexta (Rchb.f.) M.W.Chase & N.H.Williams, Gomesa forbesii (Hook.) M.W.Chase & N.H.Williams, Gomesa recurva R.Br. and Grandiphyllum divaricatum (Lindl.) Docha Neto. Knudson C (KC), Murashige & Skoog (MS), half-strength MS (1/2 MS macro- and micro-nutrients) and Woody Plant Medium (WPM) culture media were tested for germination. The WPM culture medium was the best for asymbiotic germination of all species evaluated, with high germination percentages and improved seedling development. Seeds of G. divaricatum, G. praetexta, G. recurva and G. forbesii indicated orthodox behavior, with high viability rates after 12 months of storage, being recommended the storage temperature of -80°C for the first three species and -20°C for G. forbesii. The protocol developed in the present study was efficient for seed bank storage, in vitro germination and seedling production of G. divaricatum and G. praetexta, contributing to conservation strategies of these species.


Subject(s)
Culture Techniques/methods , Germination/physiology , Orchidaceae/growth & development , Seedlings/growth & development , Seeds/growth & development , Acclimatization , Brazil , Culture Media , Endangered Species , Forests , Orchidaceae/classification , Seed Bank
9.
PLoS One ; 14(3): e0212677, 2019.
Article in English | MEDLINE | ID: mdl-30865720

ABSTRACT

Acianthera section Pleurobotryae is one of ten sections of the genus Acianthera and include four species endemic to the Atlantic Forest. The objective of this study was to describe comparatively the anatomy of vegetative organs and floral micromorphology of all species of Acianthera section Pleurobotryae in order to identify diagnostic characters between them and synapomorphies for the section in relation of other sections of the genus. We analyzed roots, ramicauls, leaves and flowers of 15 species, covering eight of the nine sections of Acianthera, using light microscopy and scanning electron microscopy. Acianthera section Pleurobotryae is a monophyletic group and the cladistic analyses of anatomical and flower micromorphology data, combined with molecular data, support internal relationship hypotheses among the representatives of this section. The synapomorphies identified for A. sect. Pleurobotryae are based on leaf anatomy: unifacial leaves, round or elliptical in cross-section, round leaves with vascular bundles organized in concentric circles, and mesophyll with 28 to 30 cell layers. Within the section, the clade (A. crepiniana + A. mantiquyrana) presented more differences in vegetative organ morphology and higher support values in combined analyses when compared to the second clade, (A. atropurpurea + A. hatschbachii). For each of these clades an exclusive set of homoplasies of vegetative and floral organs were also identified. The results support the argument that vegetative organs are more evolutionarily stable in comparison to reproductive organs and thus helpful for inference of internal phylogenetic relationships in Acianthera, while flowers are highly variable, perhaps due to the diversity of pollinator attraction mechanisms. The analyses indicate that the elliptical leaves observed in A. crepiniana have originated from round leaves observed in the other species of this section, suggesting an adaptation to increase the area of exposure of the leaf and better the efficiency of capture of sunlight in shaded environments such as the Atlantic Forest. The presence of papillose regions in both vegetative and floral organs indicated that micromorphological characters are also useful for the delimitation of species and sections within the genus.


Subject(s)
Biological Evolution , Flowers , Orchidaceae , Phylogeny , Plant Leaves , Pollination , Flowers/physiology , Flowers/ultrastructure , Microscopy, Electron, Scanning , Orchidaceae/classification , Orchidaceae/physiology , Orchidaceae/ultrastructure , Plant Leaves/physiology , Plant Leaves/ultrastructure , Pollination/physiology
10.
Mol Phylogenet Evol ; 127: 952-960, 2018 10.
Article in English | MEDLINE | ID: mdl-29969657

ABSTRACT

The colonization of the epiphytic niche of Neotropical forest canopies played an important role in orchid's extraordinary diversification, with rare reversions to the terrestrial habit. To understand the evolutionary context of those reversals, we investigated the diversification of Galeandra, a Neotropical orchid genus which includes epiphytic and terrestrial species. We hypothesized that reversion to the terrestrial habit accompanied the expansion of savannas. To test this hypothesis we generated a comprehensive time-calibrated phylogeny and employed comparative methods. We found that Galeandra originated towards the end of the Miocene in Amazonia. The terrestrial clade originated synchronously with the rise of dry vegetation biomes in the last 5 million years, suggesting that aridification dramatically impacted plant diversification and habits in the Neotropics. Shifts in habit impacted floral spur lengths and geographic range size, but not climatic niche. The longer spurs and narrower ranges characterize epiphytic species, which probably adapted to specialized long-tongued Euglossini bee pollinators inhabiting forested habits. The terrestrial species present variable floral spurs and wider distribution ranges, with evidence of self-pollination, suggesting the loss of specialized pollination system and concomitant range expansion. Our study highlights how climate change impacted habit evolution and associated traits such as mutualistic interactions with pollinators.


Subject(s)
Ecosystem , Orchidaceae/physiology , Trees/physiology , Animals , Bees/physiology , Calibration , Climate , Orchidaceae/classification , Phylogeny , Phylogeography , Pollination , Time Factors
11.
Sci Rep ; 7(1): 12878, 2017 10 10.
Article in English | MEDLINE | ID: mdl-29018291

ABSTRACT

Environmental sex determination (ESD) - a change in sexual function during an individual life span driven by environmental cues - is an exceedingly rare sexual system among angiosperms. Because ESD can directly affect reproduction success, it could influence diversification rate as compared with lineages that have alternative reproductive systems. Here we test this hypothesis using a solid phylogenetic framework of Neotropical Catasetinae, the angiosperm lineage richest in taxa with ESD. We assess whether gains of ESD are associated with higher diversification rates compared to lineages with alternative systems while considering additional traits known to positively affect diversification rates in orchids. We found that ESD has evolved asynchronously three times during the last ~5 Myr. Lineages with ESD have consistently higher diversification rates than related lineages with other sexual systems. Habitat fragmentation due to mega-wetlands extinction, and climate instability are suggested as the driving forces for ESD evolution.


Subject(s)
Biodiversity , Geography , Orchidaceae/physiology , Phylogeny , Animals , Bees/physiology , Likelihood Functions , Models, Biological , Phylogeography , Pollination
12.
PLoS One ; 10(12): e0143049, 2015.
Article in English | MEDLINE | ID: mdl-26630282

ABSTRACT

The Araucaria Forests in southern Brazil are part of the Atlantic Rainforest, a key hotspot for global biodiversity. This habitat has experienced extensive losses of vegetation cover due to commercial logging and the intense use of wood resources for construction and furniture manufacturing. The absence of precise taxonomic tools for identifying Araucaria Forest tree species motivated us to test the ability of DNA barcoding to distinguish species exploited for wood resources and its suitability for use as an alternative testing technique for the inspection of illegal timber shipments. We tested three cpDNA regions (matK, trnH-psbA, and rbcL) and nrITS according to criteria determined by The Consortium for the Barcode of Life (CBOL). The efficiency of each marker and selected marker combinations were evaluated for 30 commercially valuable woody species in multiple populations, with a special focus on Lauraceae species. Inter- and intraspecific distances, species discrimination rates, and ability to recover species-specific clusters were evaluated. Among the regions and different combinations, ITS was the most efficient for identifying species based on the 'best close match' test; similarly, the trnH-psbA + ITS combination also demonstrated satisfactory results. When combining trnH-psbA + ITS, Maximum Likelihood analysis demonstrated a more resolved topology for internal branches, with 91% of species-specific clusters. DNA barcoding was found to be a practical and rapid method for identifying major threatened woody angiosperms from Araucaria Forests such as Lauraceae species, presenting a high confidence for recognizing members of Ocotea. These molecular tools can assist in screening those botanical families that are most targeted by the timber industry in southern Brazil and detecting certain species protected by Brazilian legislation and could be a useful tool for monitoring wood exploitation.


Subject(s)
DNA Barcoding, Taxonomic , DNA, Intergenic/genetics , DNA, Plant/genetics , Endangered Species , Magnoliopsida/classification , Rainforest , Wood , Atlantic Ocean , Brazil , Magnoliopsida/genetics , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity
13.
Mol Phylogenet Evol ; 45(1): 358-76, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17716924

ABSTRACT

Resupination is the orientation of zygomorphic flowers during development so that the median petal obtains the lowermost position in the mature flower. Despite its evolutionary and ecological significance, resupination has rarely been studied in a phylogenetic context. Ten types of resupination occur among the 210 species of the orchid genus Bulbophyllum on Madagascar. We investigated the evolution of resupination in a representative sample of these species by first reconstructing a combined nrITS and cpDNA phylogeny for a sectional reclassification and then plotting the different types of inflorescence development, which correlated well with main clades. Resupination by apical drooping of the rachis appears to have evolved from apical drooping of the peduncle. Erect inflorescences with resupinate flowers seem to have evolved several times into either erect inflorescences with (partly) non-resupinate flowers or pendulous inflorescences with resupinate flowers.


Subject(s)
Evolution, Molecular , Flowering Tops/genetics , Orchidaceae/anatomy & histology , Orchidaceae/growth & development , Orchidaceae/genetics , Cell Nucleus/genetics , DNA, Chloroplast/analysis , Flowering Tops/growth & development , Flowering Tops/physiology , Madagascar , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...