Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068020

ABSTRACT

At a time of growing epidemic hazards caused by a very rapid evolution of dangerous pathogens, there is a pressing demand for bioactive textiles. Therefore, the development of high-quality knitted structures that could be used as bioactive protective materials has become a priority. This publication describes the fabrication of functional knitted structures from previously prepared antibacterial cellulose fibers containing nanosilica with immobilized silver nanoparticles. The structural and physical parameters of knitted fabrics made from them were studied with a view to their potential application in bioactive protective gloves. Tests of the basic structural and physical parameters of the knitted fabrics did not show that the nanomodifier applied in fibers significantly impacts the physical properties of the resulting fabrics. Moreover, water vapor permeability, cut resistance, and pH test results relevant to the functional and protective properties of interest and to user comfort showed that the obtained fabrics can be used in the production of bioactive protective gloves.

2.
Carbohydr Polym ; 294: 119782, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868757

ABSTRACT

The unique properties of upconverting nanoparticles are responsible for their various applications in photonic materials, medicine, analytics, or energy conversion. In this work, the NaErF4:Tm3+@NaYF4 core@shell nanoparticles were synthesized by reaction in high-boiling point solvents and incorporated into cellulose fibers. Nanoparticles showed intense upconversion under 1532 nm excitation wavelength due to Er3+ in their structure. Additional co-doping with Tm3+ ions allowed to shift of the typical green luminescence of Er3+ ions to red especially demanded in anti-counterfeiting applications. The products' composition, morphology, and structure parameters confirmed their requested properties. The article demonstrates that cellulose fibers are suitable carriers of NaErF4:Tm3+@NaYF4 NPs. We also show that the temperature-dependent emission of Er3+ ions allows for the preparation of temperature-sensing cellulose fibers.


Subject(s)
Erbium , Nanoparticles , Cellulose , Erbium/chemistry , Fluorides/chemistry , Nanoparticles/chemistry , Temperature , Yttrium/chemistry
3.
Materials (Basel) ; 14(15)2021 Jul 24.
Article in English | MEDLINE | ID: mdl-34361322

ABSTRACT

The main aim of the presented research is to determine the optimal conditions for the production of silver nanoparticles (AgNPs) in N-methylmorpholine-N-oxide (NMMO), which will potentially allow to obtain small nanoparticles with uniform diameter distribution. In this paper, NMMO is used in the fibre production process, both as a direct cellulose solvent and as an Ag+ reducing system. From an industrial point of view, this method is very promising because it allows to reduce the amount of used chemicals. The UV/Vis, DLS and TEM analysis proved that the synthesis temperature and time could play a key role in nanoparticle growth control in NMMO. It was found that the optimal conditions for AgNPs synthesis are 100 °C and 0.33 h. The estimations of the antibacterial activity of the fibres were completed. The applied AgNPs synthesis conditions allow to obtain antibacterial fibres with a wide range of applications, mainly in medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...