Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Plant Dis ; 107(9): 2729-2735, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36774578

ABSTRACT

Increased populations of Heterodera avenae in southeastern Idaho are associated with increased planting of susceptible cereal cultivars and lack of crop rotation. Identifying high-yield, resistant spring wheat cultivars with tolerance requires testing new genotypes and susceptibility assessments of marketed cultivars. We conducted two experiments to determine whether cultivars with putative resistance could maintain acceptable yield in the presence of H. avenae. We also evaluated the tolerance response in relation to previously tested cultivars. Seven spring wheat cultivars were planted in two irrigated commercial fields that were naturally infested with high populations of H. avenae. Measures of resistance, tolerance, and grain yield were assessed in aldicarb-treated versus nontreated plots. In aldicarb-treated plots in both years, grain yield of the susceptible cultivars Snow Crest, WestBred 936, WB9411, Patwin-515, and WB9668 was significantly increased. The expected yield increase with aldicarb was limited for the moderately susceptible Expresso due to water stress. 'WB-Rockland', carrying the Cre5 resistance gene, maintained its standard yield, while none of the other cultivars in the experiment showed resistance or tolerance. Our results indicated that aldicarb improves wheat grain yield in irrigated crop production systems, and although removed from the market, it is effective and has utility for research. The results also support the hypothesis that high yield susceptible cultivars can mask the effect of H. avenae on grain yield when managed appropriately.


Subject(s)
Cysts , Tylenchoidea , Animals , Triticum/genetics , Edible Grain , Aldicarb , Idaho , Tylenchoidea/genetics
2.
Phytopathology ; 112(9): 1988-1997, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35509208

ABSTRACT

Heterodera avenae, a globally distributed plant-parasitic nematode, is one of the most significant pests on cereal crops. In China, it is widely distributed in cereal-growing areas of 16 provinces and causes serious yield losses. In the present study, a total of 98 populations of H. avenae were collected from major wheat-growing regions in China and six other countries. The mitochondrial COI genes were amplified and analyzed. Forty-one mitochondrial COI haplotypes were identified, suggesting a high genetic diversity and endemism level of H. avenae in China. Phylogenetic analysis showed that H. avenae populations in China were divided into four clades. Significant evolutionary and genetic differences were found between Chinese (except Hubei) and foreign populations. Hap1, the most widely distributed haplotype, was considered to be a separate evolutionary origin in China. The gene flow of H. avenae from the northwestern region to the north China region and Huang-Huai-Hai region was significant, so as the direction between north China and Huang-Huai-Hai region. We speculate that water flowing from the Yellow River and mechanical harvesters promoted gene exchange among these groups. A distance-based redundancy analysis showed that genetic distances observed among H. avenae populations were explained foremost not only by geographic distance but also by temperature and precipitation. This study provides theoretical support for the origin and spread of H. avenae populations in China and elsewhere in the world.


Subject(s)
Cysts , Tylenchoidea , Animals , Edible Grain/parasitology , Phylogeny , Phylogeography , Plant Diseases/parasitology , Tylenchoidea/genetics
3.
Plant Dis ; 105(11): 3324-3343, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34236212

ABSTRACT

Root-lesion nematodes (Pratylenchus spp.) are parasites that invade and deteriorate roots, thereby reducing the efficiency of water and nutrient uptake. Pratylenchus neglectus and P. thornei are the two species that are most prevalent and cause reduced yields of rainfed wheat and barley in semiarid regions of the Pacific Northwest. They are particularly damaging where wheat and barley are produced without irrigation in areas receiving less than 450 mm (18 in.) of precipitation annually. This review is focused on the biology and management of P. neglectus and P. thornei in semiarid rainfed agriculture. Characteristics of climates, soils, and crop production systems are described as a preface to constraints placed upon management options. Discussions include the economic importance, host ranges, and protocols for sampling and species identification. Discussion of disease management options include crop rotation, genetic resistance and tolerance, planting date, trap and biofumigant crops, crop nutrition, chemical and biological nematicides, and tillage. Predictions for rainfed agriculture in a period of changing climate are presented, as are suggestions for important areas of research including crop genetics, nematode testing, and communication of results, Pratylenchus biology, mechanisms of resistance, the phytobiome, and closing the "yield gap" between actual and attainable yields.


Subject(s)
Hordeum , Tylenchoidea , Animals , Edible Grain , Plant Diseases , Triticum
4.
Plant Dis ; 105(12): 3803-3808, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34042496

ABSTRACT

Economic loss from Rhizoctonia bare patch, caused by Rhizoctonia solani AG-8, was estimated in two 50-ha fields on a single farm. A winter wheat crop was managed as a conventionally cultivated 2-year wheat/fallow rotation and a spring barley crop was managed as a no-till annual crop. Aerial photographs revealed that the patch-affected area was nearly double in barley (17%) compared with wheat (9%). Yield inside patches was reduced by 73 and 68% for wheat and barley, respectively. Grain produced on each field was reduced more for winter wheat (21.6 metric tons [t], valued at US$5,080) than for spring barley (16.8 t, valued at US$2,784). More precise estimates of economic damage and more robust management practices for Rhizoctonia bare patch must be developed.


Subject(s)
Hordeum , Rhizoctonia , Oregon , Plant Diseases , Triticum
5.
Plant Dis ; 104(2): 348-357, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31841102

ABSTRACT

Fusarium crown rot becomes most severe when wheat is stressed for water near the time of anthesis. This research examined the potential to study crown rot in the gradient of resource competition near a tree windbreak. Winter wheat was planted for 2 years into a field infested by Fusarium pseudograminearum and bordered by 17-m-high Austrian pines. Crown rot, plant growth and yield, and soil water content were evaluated at six distances (5 to 46 m) perpendicular to the tree line in strip plots inoculated or not inoculated with the pathogen. Crown rot was minor (<5% whiteheads) in noninoculated strips and greater in inoculated strips (26 to 35%) in a 21-m zone from 9 to 30 m from the tree line (0.5-1.8 times the tree height; 0.5-1.8H). At 46 m (2.7H), crown rot was similar in noninoculated and inoculated strips (2 to 5% whiteheads). Whiteheads and culm browning were roughly the reverse of soil water depletion by tree roots. Grain yield at 23 m compared with 46 m was reduced by 33 to 35% in noninoculated plots and by 43 to 49% in inoculated plots. It is possible to study associations between water stress and Fusarium crown rot in the zone of resource competition near windbreaks.


Subject(s)
Fusarium , Edible Grain , Plant Diseases , Trees , Triticum
6.
Plant Dis ; 103(11): 2857-2864, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31524084

ABSTRACT

Assessments of Fusarium crown rot are often made in field trials inoculated with Fusarium pseudograminearum or F. culmorum. Factors affecting the efficiency of two inoculation procedures were evaluated. Pulverized Fusarium-colonized wheat plus oat grain inoculum mixed with the wheat seed caused more seedling damping-off compared with equal rates of colonized whole millet seeds placed 2 cm above the wheat seed. Both inoculation systems increased the incidence and severity of crown rot. The efficiency of F. pseudograminearum-colonized millet seed inoculum was not reduced when wheat seed was treated with difenoconazole. Crown rot in inoculated plots became greater when starter fertilizer was applied with or below the wheat seed and when soil below the wheat seed was disrupted by a seed drill with an opener that creates a groove or trench directly below the seed. No biologically important associations were detected between whiteheads and other measures of crown rot, grain yield, or grain test weight. The millet seed inoculation system was the most efficient for wheat production systems in the semiarid U.S. Pacific Northwest.


Subject(s)
Agriculture , Fusarium , Soil Microbiology , Triticum , Agriculture/methods , Northwestern United States , Plant Diseases/prevention & control , Triticum/microbiology
7.
Plant Dis ; 103(10): 2612-2623, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31408402

ABSTRACT

Symptoms of Fusarium crown rot of wheat include premature death of inflorescens (whiteheads), lesions on subcrown internodes, and rotting of crown tissue and lower stem internodes. Each symptom type is influenced by a different set of environmental conditions. Whiteheads are the easiest symptom to quantify and are frequently reported in the Pacific Northwest U.S.A. The objective of this research was to examine factors associated with whitehead expression and relationships with wheat yield and test weight. Incidence of whiteheads differed for inoculations with different isolates of F. pseudograminearum and F. culmorum, and over years due to weather factors. Whiteheads became less as planting dates for winter wheat were delayed until after September, and incidence was increased with increasing nitrogen application rate. Dates of initial and greatest expression of whiteheads differed among cultivars, which was associated in part with the cultivar heading date. Whiteheads were not correlated with subcrown internode lesions or browning of crown tissue. Whiteheads were also not correlated with grain test weight. Whiteheads were sometimes negatively associated with grain yield, but that relationship was variable and could not be considered a reliable, recurrent, or accurate measure of crown rot severity. These results indicate the need for caution in reporting whiteheads as a sole indicator of cultivar susceptibility to Fusarium crown rot.


Subject(s)
Agriculture , Fusarium , Plant Diseases , Triticum , Agriculture/methods , Edible Grain/microbiology , Fusarium/physiology , Northwestern United States , Plant Diseases/prevention & control , Triticum/microbiology
8.
G3 (Bethesda) ; 7(4): 1109-1116, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28159864

ABSTRACT

Soil-borne pathogens of the Pacific Northwest decrease yields in both spring and winter wheat. Pathogens of economic importance include Fusarium culmorum, Pratylenchus neglectus, P. thornei, and Rhizoctonia solani AG8. Few options are available to growers to manage these pathogens and reduce yield loss, therefore the focus for breeding programs is on developing resistant wheat cultivars. A recombinant inbred line population, LouAu (MP-7, NSL 511036), was developed to identify quantitative trait loci (QTL) associated with resistance to P. neglectus and P. thornei This same population was later suspected to be resistant to F. culmorum and R. solani AG8. This study confirms partial resistance to F. culmorum and R. solani AG8 is present in this population. Six major and 16 speculative QTL were identified across seven measured traits. Four of the six major QTL were found within the same genomic region of the 5A wheat chromosome suggesting shared gene(s) contribute to the resistance. These QTL will be useful in breeding programs looking to incorporate resistance to soil-borne pathogens in wheat cultivars.


Subject(s)
Disease Resistance/genetics , Inbreeding , Plant Diseases/microbiology , Recombination, Genetic , Soil Microbiology , Triticum/genetics , Triticum/immunology , Inheritance Patterns/genetics , Northwestern United States , Phenotype , Quantitative Trait Loci/genetics , Statistics as Topic , Triticum/microbiology
9.
Plant Dis ; 101(10): 1692-1720, 2017 Oct.
Article in English | MEDLINE | ID: mdl-30676930

ABSTRACT

Small grain cereals have served as the basis for staple foods, beverages, and animal feed for thousands of years. Wheat, barley, oats, rye, triticale, rice, and others are rich in calories, proteins, carbohydrates, vitamins, and minerals. These cereals supply 20% of the calories consumed by people worldwide and are therefore a primary source of energy for humans and play a vital role in global food and nutrition security. Global production of small grains increased linearly from 1960 to 2005, and then began to decline. Further decline in production is projected to continue through 2050 while global demand for these grains is projected to increase by 1% per annum. Currently, wheat, barley, and oat production exceeds consumption in developed countries, while in developing countries the consumption rate is higher than production. An increasing demand for meat and livestock products is likely to compound the demand for cereals in developing countries. Current production levels and trends will not be sufficient to fulfill the projected global demand generated by increased populations. For wheat, global production will need to be increased by 60% to fulfill the estimated demand in 2050. Until recently, global wheat production increased mostly in response to development of improved cultivars and farming practices and technologies. Production is now limited by biotic and abiotic constraints, including diseases, nematodes, insect pests, weeds, and climate. Among these constraints, plant-parasitic nematodes alone are estimated to reduce production of all world crops by 10%. Cereal cyst nematodes (CCNs) are among the most important nematode pests that limit production of small grain cereals. Heavily invaded young plants are stunted and their lower leaves are often chlorotic, forming pale green patches in the field. Mature plants are also stunted, have a reduced number of tillers, and the roots are shallow and have a "bushy-knotted" appearance. CCNs comprise a number of closely-related species and are found in most regions where cereals are produced.


Subject(s)
Edible Grain , Tylenchoidea , Animals , Edible Grain/parasitology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Diseases/statistics & numerical data , Poaceae/parasitology , Tylenchoidea/physiology
10.
Plant Dis ; 100(8): 1677-1685, 2016 Aug.
Article in English | MEDLINE | ID: mdl-30686214

ABSTRACT

The cereal cyst nematode Heterodera avenae reduces wheat yield in the Pacific Northwest. Resistance and tolerance traits among spring wheat cultivars were poorly defined. Screening trials were conducted with 39 cultivars over a 2-year period in irrigated commercial fields that were infested by H. avenae. Comparisons were made between drill strips treated or untreated with aldicarb at the time of planting. Root sampling at the time of plant anthesis indicated that cultivars differed greatly in susceptibility to H. avenae, with numbers of newly produced white H. avenae females ranging from <5 to 70 per plant. Aldicarb reduced mean numbers of white females as much as 99% on the most susceptible cultivar ('Glee') and increased mean grain yield as much as 77% for the least tolerant cultivar ('Cataldo'). Density of H. avenae eggs in untreated soil following harvest was significantly higher than the density in aldicarb-treated plots. Agronomically acceptable traits of resistance plus tolerance were identified in one cultivar of hard red spring wheat ('WB-Rockland') and two cultivars of hard white spring wheat ('Klasic' and 'LCS Star') but in none of the soft white spring wheat cultivars. This is the first report of spring wheat cultivars expressing the dual traits of resistance plus tolerance to H. avenae.

11.
Plant Dis ; 100(8): 1692-1708, 2016 Aug.
Article in English | MEDLINE | ID: mdl-30686230

ABSTRACT

Rainfed experiments operated continuously for up to 84 years in semiarid eastern Oregon are among the oldest agronomic trials in North America. Disease incidence and severity had been quantified visually but quantification of inoculum density had not been attempted. Natural inoculum of 17 fungal and nematode pathogens were quantified for each of 2 years on eight trials using DNA extracts from soil. Crop type, tillage, rotation, soil fertility, year, and their interactions had large effects on the pathogens. Fusarium culmorum and Pratylenchus thornei were more dominant than F. pseudograminearum and P. neglectus where spring crops were grown, and the opposite species dominances occurred where winter wheat was the only crop. Bipolaris sorokiniana and Phoma pinodella were restricted to the presence of spring cereals and pulse crops, respectively. Helgardia spp. occurred in winter wheat-fallow rotations but not in annual winter wheat. Gaeumannomyces graminis var. tritici was more prevalent in cultivated than noncultivated soils and the opposite generally occurred for Rhizoctonia solani AG-8. Densities of Pythium spp. clade F were high but were also influenced by treatments. Significant treatment effects and interactions were more prevalent in two long-standing (>50-year) annually cropped experiments (29%) than two long-standing 2-year wheat-fallow rotations (14%). Associations among pathogens occurred mostly in an 84-year-old annual cereals experiment. This survey provided guidance for research on dynamics of root-infecting pathogens of rainfed field crops and identified two pathogens (Drechslera tritici-repentis and P. pinodella) not previously identified at the location.

12.
Plant Dis ; 100(2): 396-407, 2016 Feb.
Article in English | MEDLINE | ID: mdl-30694123

ABSTRACT

Heterodera avenae is a cereal cyst nematode that reduces wheat yields in the Pacific Northwest of the United States. Barley is also susceptible but there were no previous reports of resistance or tolerance to H. avenae in the United States. Spring barley cultivars were assayed in H. avenae-infested fields over 2 years. Cultivars were planted in plots treated or not treated with aldicarb. Forty-five cultivars were evaluated for the market classes of two- and six-row feed barley cultivars and two- and six-row malt barley cultivars. One two-row feed barley ('Lenetah') was ranked as resistant and four were tolerant or very tolerant. In total, 1 two-row malt barley ('Odyssey') was very resistant and 10 were tolerant or very tolerant. Two six-row feed and two six-row malt barley cultivars were tolerant or very tolerant but none were resistant. Seven feed barley cultivars were ranked as having a balance of at least moderate resistance plus moderate tolerance: 'Champion', Lenetah, 'Xena', 'Idagold II', 'Transit', 'Millennium', and 'Goldeneye'. This is the first report of resistance and tolerance of barley in H. avenae-infested fields in the Pacific Northwest. Barley productivity can be improved by planting resistant plus tolerant cultivars or by using highly resistant and highly tolerant cultivars as parents in barley improvement programs.

13.
Plant Dis ; 99(3): 376-386, 2015 Mar.
Article in English | MEDLINE | ID: mdl-30699695

ABSTRACT

The cereal cyst nematode Heterodera avenae suppresses wheat production in the western United States. A second species of cereal cyst nematode, H. filipjevi, was identified in eastern Oregon during 2008. This paper reports the discovery of H. filipjevi-infested fields in eastern Washington, thereby extending the known distribution of H. filipjevi in the United States. The identity of H. filipjevi was determined and confirmed by species-specific polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism (RFLP), sequencing, and cyst morphology. Soils that were collected from naturally infested fields in Washington were used to compare the virulence of H. avenae and H. filipjevi on six spring wheat cultivars under controlled-environment conditions. Noninfested soils from nearby fields were used as controls. Cultivars Ouyen and WB Rockland were resistant to H. avenae and susceptible to H. filipjevi. Cultivars Sönmez and SY Steelhead were resistant to H. filipjevi and susceptible to H. avenae. Cultivars Louise and WB 936 were susceptible to both species. The resistance of SY Steelhead to 'H. avenae', reported in a previous paper, is corrected as resistance to H. filipjevi due to an earlier misidentification of H. filipjevi. Management guidelines that include crop rotations and resistant cultivars are presented. Discovery of additional infestations of H. filipjevi are anticipated when DNA-based tests become used routinely in commercial diagnostic laboratories.

14.
Plant Dis ; 98(10): 1341-1348, 2014 Oct.
Article in English | MEDLINE | ID: mdl-30703934

ABSTRACT

Thirty crop species and cultivars were assayed in the greenhouse for efficiency as hosts of Pratylenchus neglectus and P. thornei. Hosting ability ratings were assigned using the ratio of final versus initial nematode density and also by comparing the final nematode density to that of a susceptible wheat control. Good hosts of both Pratylenchus spp. included oat 'Monida', chickpea 'Myles', and lentil 'Athena' and 'Morton'. Good hosts of P. neglectus but not of P. thornei included 10 Brassica spp. (5 canola, 2 mustard, and 3 camelina cultivars), chickpea 'Sierra', sudangrass 'Piper', and sorghum/sudangrass hybrid 'Greentreat Plus'. Good hosts of P. thornei but not of P. neglectus included lentil 'Skyline' and pea 'Granger', 'Journey', and 'Universal'. Poor or minor hosts of both Pratylenchus spp. included chickpea 'Dwelley', pea 'Badminton', safflower 'Gila', 'Girard', and 'KN 144', sunflower '2PD08', flax 'Pembina', eastern gamagrass 'Pete', and switchgrass 'Blackwell'. Results of these assays will provide guidance for improving crop rotation and cultivar selection efficiencies.

15.
Plant Dis ; 98(10): 1333-1340, 2014 Oct.
Article in English | MEDLINE | ID: mdl-30703935

ABSTRACT

Eighteen rangeland plants and 16 weed species were assayed in the greenhouse for efficiency as hosts of Pratylenchus neglectus and P. thornei. Hosting ability ratings were assigned using the ratio of final versus initial nematode density and by comparing the final nematode density to that of susceptible wheat controls. Good hosts of both Pratylenchus spp. included thickspike bluegrass 'Critana', smooth brome 'Manchar', seven wheatgrasses, and jointed goatgrass. Good hosts of P. neglectus but not P. thornei included two hairy vetches, western wheatgrass 'Rosana', big bluegrass 'Sherman', tall wheatgrass 'Alkar', green foxtail, kochia, large crabgrass, palmer amaranth, redroot pigweed, tumble mustard, and wild oat. Good hosts of P. thornei but not P. neglectus included hard fescue 'Durar', sheep fescue 'Blacksheep', downy brome, and rattail fescue. Poor or minor hosts of both Pratylenchus spp. included two alfalfas, dandelion, horseweed, lambsquarters, prostrate spurge, and Russian thistle. These assays will provide guidance for transitioning rangeland into crop production and for understanding the role of weeds on densities of Pratylenchus spp. in wheat-production systems.

16.
Plant Dis ; 98(6): 797-805, 2014 Jun.
Article in English | MEDLINE | ID: mdl-30708637

ABSTRACT

Pratylenchus neglectus and P. thornei reduce wheat yields in the Pacific Northwest of the United States. Resistant landrace cultivars have been identified using controlled environments. Field resistance and tolerance characteristics were compared over 3 years and two locations for four spring wheat cultivars: the susceptible 'Alpowa' and 'Louise' and the resistant landraces AUS28451 and Persia 20. Proportions and densities of P. neglectus and P. thornei differed across seasons and locations. Resistance was evaluated by comparing preplant and postharvest densities of nematodes in soil. Tolerance was evaluated by comparing grain yield and grain quality in plots treated or untreated by the nematicide aldicarb. Alpowa was susceptible and intolerant, Louise was susceptible and moderately tolerant, AUS28451 was resistant and intolerant, and Persia 20 was moderately susceptible and moderately intolerant. The species dominance shifted from P. neglectus to P. thornei in one field over a period of 3 years in apparent response to cultivars and crops planted. Estimates of economic loss caused by Pratylenchus spp. ranged from $8 to $20/ha. Economic benefits appear to be achievable by developing a spring wheat genotype with tolerance plus resistance, such as with a cross between AUS28451 and Louise.

17.
Phytopathology ; 103(11): 1130-40, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24102211

ABSTRACT

Fusarium crown rot (FCR) is one of the most widespread root and crown diseases of wheat in the Pacific Northwest (PNW) of the United States. Our objectives were to characterize crown rot severity and distribution throughout the PNW by conducting a survey of 210 fields covering the diverse dryland wheat-producing areas of Washington and Oregon and to utilize a factor analysis statistical approach to determine the effects of climate and geography on species distribution and disease severity. Climatic variables were based on 30-year averages and 2008 and 2009 separately (the 2 years of the survey). Mean annual temperature, mean temperature in the coldest month, mean temperature in the warmest month, mean annual precipitation, snowfall, elevation, soil type, and cropping intensity were highly intercorrelated. The factor analysis of the climate variables resulted in the development of two latent factors that could be used as predictor variables in logistic regression models for the presence or absence of Fusarium spp. and of FCR disease scores. Isolates of Fusarium spp. were recovered from 99% of 105 fields sampled in 2008 and 97% of fields in 2009. There were differences between years for responses of FCR and nodes scores, and isolations of Fusarium pseudograminearum with more significant results in 2008, due to warmer drier weather. Results of the factor analysis showed that the distribution of F. pseudograminearum occurred in a greater frequency in areas of the PNW at lower elevations with lower moisture and higher temperatures in 2008, whereas F. culmorum occurred in greater frequency in areas at higher elevations with moderate to high moisture and cooler temperatures consistently across both years. Disease scores increased with increasing levels of factors 1 (primarily temperature) and 2 (primarily precipitation). Both the frequency of pathogen species and disease scores were influenced by the year, indicating that soilborne pathogens are responsive to short-term changes in environment. This factor analysis approach can be utilized in studies to determine the effects of climate and other environmental (soil, cropping system, and so on) factors on the distribution and severity of root diseases.


Subject(s)
Fusarium/physiology , Plant Diseases/microbiology , Triticum/microbiology , Climate , Demography , Fusarium/growth & development , Geography , Idaho , Logistic Models , Oregon , Plant Diseases/statistics & numerical data , Polymerase Chain Reaction , Rain , Soil , Temperature , Washington
18.
Plant Dis ; 97(6): 757-764, 2013 Jun.
Article in English | MEDLINE | ID: mdl-30722595

ABSTRACT

Pratylenchus neglectus is one of the most widespread and economically important nematodes that invades plant roots and restricts wheat productivity in the Pacific Northwest. It is challenging to quantify P. neglectus using microscopic methods for studies that require large-scale sampling, such as assessment of rotation crops, wheat cultivars, and other management practices. A real-time quantitative polymerase chain reaction (qPCR) assay was developed to detect and quantify P. neglectus from DNA extracts of soil. The primers, designed from the internal transcribed spacer region of rDNA, showed high specificity with a single melt curve peak to DNA from eight isolates of P. neglectus but did not amplify DNA from 28 isolates of other plant-parasitic and non-plant-parasitic nematodes. A standard curve (R2 = 0.96; P < 0.001) was generated by amplifying DNA extracted from soil to which nematodes were added. The soil standard curve was validated using sterilized soil inoculated with lower numbers of P. neglectus. A significant positive relationship (R2 = 0.66; P < 0.001) was observed for nematode numbers quantified from 15 field soils using qPCR and the Whitehead tray and microscopic method but the qPCR generally tended to provide higher estimates. Real-time PCR potentially provides a useful platform for efficient detection and quantification of P. neglectus directly from field soils.

19.
Plant Dis ; 97(11): 1470-1477, 2013 Nov.
Article in English | MEDLINE | ID: mdl-30708460

ABSTRACT

Growth and yield of winter wheat are suppressed by Pratylenchus thornei and by Fusarium culmorum. Many fields in cereal production regions throughout the world are infested by both pathogens. We evaluated effects of one or both pathogens on winter wheat growth, grain yield, and disease parameters at heading and harvest stages over 2 years in inoculated, rainfed pots incubated outdoors. P. thornei nematodes were inoculated at 1, 2, or 4 nematodes/g of soil and F. culmorum was added as colonized millet seed at 0.65 g/kg of soil. At harvest, compared with the noninoculated control, the high rate of P. thornei reduced (P < 0.05) plant height, shoot weight, root weight, and grain yield by 19, 17, 48, and 31%, respectively. F. culmorum alone reduced these parameters by 15, 16, 22, and 22%, respectively. Co-inoculations caused reductions of 27, 38, 61, and 63%, respectively. The reproductive rate of P. thornei was not greatly affected by co-inoculation with F. culmorum. Disease severity ratings at both plant growth stages became amplified as the nematode density was increased, and were much greater in the presence of both pathogens. Effects of co-inoculation on grain yield were slightly greater than predicted by additive effects of the individual pathogens, suggesting a synergistic effect on yield depression.

20.
Plant Dis ; 97(11): 1448-1456, 2013 Nov.
Article in English | MEDLINE | ID: mdl-30708470

ABSTRACT

Field surveys were conducted by collecting soil samples to estimate nematode densities in soil from winter wheat, spring wheat, spring barley, and spring legumes (lentil, chickpea, and pea) fields during 2010 and 2011. Pratylenchus spp. were observed in 60% of sampled fields. However, nematodes were detected in nearly all of the survey fields in high numbers where crops were grown every year. To identify climatic variables associated with density of Pratylenchus spp. in soil, correlation and regression analyses were performed using climate data of survey sites from 1979 to 2010. Fifty-seven climate variables were significantly correlated with densities of Pratylenchus spp. All precipitation variables were significantly positively correlated with nematode abundance. Summer maximum air temperature was negatively correlated and winter minimum air temperature was positively correlated with nematode densities. In addition, both years' nematode densities were significantly correlated with cropping intensity. Five multivariate regression models for 2010 and seven models for 2011 nematode abundance levels were developed. The majority of the climate variables selected in the models were related to precipitation. Knowledge of root-lesion nematode distribution in the dryland region of eastern Washington and associated climate variables may be helpful to determine risk and apply management practices to minimize crop damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...