Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Acoust Soc Am ; 155(4): 2875-2890, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38682913

ABSTRACT

Numerical simulations of head-related transfer functions (HRTFs) conventionally assume a rigid boundary condition for the pinna. The human pinna, however, is an elastic deformable body that can vibrate due to incident acoustic waves. This work investigates how sound-induced vibrations of the pinna can affect simulated HRTF magnitudes. The work will motivate the research question by measuring the sound-induced vibrational patterns of an artificial pinna with a high-speed holographic interferometric system. Then, finite element simulations are used to determine HRTFs for a tabletop model of the B&K 5128 head and torso simulator for a number of directions. Two scenarios are explored: one where the pinna is modeled as perfectly rigid, and another where the pinna is modeled as linear elastic with material properties close to that of auricular cartilage. The findings suggest that pinna vibrations have negligible effects on HRTF magnitudes up to 5 kHz. The same conclusion, albeit with less certainty, is drawn for higher frequencies. Finally, the importance of the elastic domain's material properties is emphasized and possible implications for validation studies on dummy heads 1as well as the limitations of the present work are discussed in detail.


Subject(s)
Computer Simulation , Ear Auricle , Finite Element Analysis , Head , Sound , Vibration , Humans , Ear Auricle/physiology , Ear Auricle/anatomy & histology , Head/physiology , Head/anatomy & histology , Holography/methods , Interferometry/methods , Elasticity , Numerical Analysis, Computer-Assisted , Models, Biological , Motion , Acoustic Stimulation
2.
Polymers (Basel) ; 15(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37688173

ABSTRACT

Inks for 3D printing were prepared by dispersing bacterial cellulose nanofibers (CNF) functionalized with methacrylate groups in a polymerizable deep eutectic solvent (DES) based on choline chloride and acrylic acid with water as a cosolvent. After 3D printing and UV-curing, the double-network composite gel consisting of chemically and physically crosslinked structures composed from sub-networks of modified CNF and polymerized DES, respectively, was formed. The rheological properties of inks, as well as mechanical and shape memory properties of the 3D-printed gels, were investigated in dynamic and static modes. It was shown that the optimal amount of water allows improvement of the mechanical properties of the composite gel due to the formation of closer contacts between the modified CNF. The addition of 12 wt% water results in an increase in strength and ultimate elongation to 11.9 MPa and 300%, respectively, in comparison with 5.5 MPa and 100% for an anhydrous system. At the same time, the best shape memory properties were found for an anhydrous system: shape fixation and recovery coefficients were 80.0 and 95.8%, respectively.

3.
Polymers (Basel) ; 15(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37177302

ABSTRACT

The aim of this work was to study the influence of water as a co-solvent on the interaction between a polymerizable ionic liquid-choline acrylate (ChA)-and bacterial cellulose. Bacterial cellulose dispersed in ChA is a new type of UV-curable biopolymer-based ink that is a prospective material for the 3D printing of green composite ion-gels. Higher cellulose content in inks is beneficial for the ecological and mechanical properties of materials, and leads to increased viscosity and the yield stress of such systems and hampers printability. It was found that the addition of water results in (1) a decrease in the solvent viscosity and yield stress; and (2) a decrease in the stability of dispersion toward phase separation under stress. In this work, an optimal composition in the range of 30-40 wt% water content demonstrating 97-160 Pa of yield stress was found that ensures the printability and stability of inks. The rheological properties of inks and mechanical characteristics (0.7-0.8 MPa strength and 1.1-1.2 MPa Young's modulus) were obtained. The mechanism of influence of the ratio ChA/water on the properties of ink was revealed with atomic force microscopy, wide-angle X-ray diffraction studies of bacterial cellulose after regeneration from solvent, and computer simulation of ChA/water mixtures and their interaction with the cellulose surface.

4.
Polymers (Basel) ; 15(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38231953

ABSTRACT

This feature article is devoted to the evaluation of different techniques for producing colloidal polyelectrolyte brushes (CPEBs) based on cellulose nanofibers modified with grafted polyacrylates. The paper also reviews the potential applications of these CPEBs in designing electrode materials and as reinforcing additives. Additionally, we discuss our own perspectives on investigating composites with CPEBs. Herein, polyacrylic acid (PAA) was grafted onto the surface of cellulose nanofibers (CNFs) employing a "grafting from" approach. The effect of the PAA shell on the morphological structure of a composite with polypyrrole (PPy) was investigated. The performance of as-obtained CNF-PAA/PPy as organic electrode material for supercapacitors was examined. Furthermore, this research highlights the ability of CNF-PAA filler to act as an additional crosslinker forming a physical sub-network due to the hydrogen bond interaction inside chemically crosslinked polyacrylamide (PAAm) hydrogels. The enhancement of the mechanical properties of the material with a concomitant decrease in its swelling ratio compared to a pristine PAAm hydrogel was observed. The findings were compared with the recent theoretical foundation pertaining to other similar materials.

5.
Polymers (Basel) ; 14(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36501542

ABSTRACT

Two polymerizable ionic liquids (or monomeric ionic liquids, mILs) namely 1-butyl-3-methylimidazolium and choline acrylates ([C4mim]A and ChA, respectively) were synthesized using the modified Fukumoto method from corresponding chlorides. The chemical structure of the prepared mILs was confirmed with FTIR and NMR study. Investigation of the thermal properties with DSC demonstrates that both mILs have a Tg temperature of about 180 K and a melting point around 310 K. It was shown that the temperature dependence of FTIR confirm the Tg to be below 200. Both mILs exhibited non-Newtonian shear thinning rheological behavior at shear rates >4 s−1. It was shown that [C4mim]A is able to dissolve bacterial cellulose (BC) leading to a decrease in its degree of polymerization and recrystallisation upon regeneration with water; although in the ChA, the crystalline structure and nanofibrous morphology of BC was preserved. It was demonstrated that the thixotropic and rheological properties of cellulose dispersion in ChA at room temperature makes this system a prospective ink for 3D printing with subsequent UV-curing. The 3D printed filaments based on ChA, containing 2 wt% of BC, and 1% of N,N'-methylenebisacrylamide after radical polymerization induced with 1% 2-hydroxy-2-methylpropiophenone, demonstrated Young's modulus 7.1 ± 1.0 MPa with 1.2 ± 0.1 MPa and 40 ± 5% of strength and ultimate elongation, respectively.

6.
JASA Express Lett ; 2(6): 062401, 2022 06.
Article in English | MEDLINE | ID: mdl-36154157

ABSTRACT

This paper presents a verification procedure for finite-difference time-domain-simulated head-related transfer functions (HRTFs) from a simplified model of a human head, a sphere. The analytic solution required by the code verification is computed with the multipole reexpansion technique and used to estimate convergence rates. A solution verification process follows in which asymptotic predictions are computed. For the HRTFs considered and employed grids, results show that the convergence rates attain the expected first-order accuracy at lower frequencies, after which scattered estimates are observed. Results also reveal that the asymptotic predictions are accurate up to 10 kHz, after which bias is observed.

7.
Carbohydr Polym ; 290: 119475, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35550751

ABSTRACT

3D-printing of stimuli-responsible electroactive gels containing biopolymers, such as cellulose nanocrystals (CNC), is a prospective area of material science. Deep eutectic solvents (DES) have shown a potential interest for applications in electroactive materials as well as for processing of cellulose. In this work, CNC obtained by two methods of processing microcrystalline cellulose were used for preparation of inks containing 6-15 wt% of CNC in polymerizable DES based on choline chloride/acrylic acid. The impact of rheological properties of the inks on 3D-printability was evaluated. The effect of CNC content on the morphology and ionic conductivity of 3D-printed electroactive composite gels was investigated using atomic force microscopy and impedance spectroscopy measurements. The potential application of the obtained materials for designing of a 3D-printed tactile sensor have been demonstrated.


Subject(s)
Deep Eutectic Solvents , Nanoparticles , Cellulose/chemistry , Hydrogels/chemistry , Ions , Nanoparticles/chemistry , Solvents
9.
Polymers (Basel) ; 13(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34577946

ABSTRACT

In this work, a novel approach is demonstrated for 3D-printing of bacterial cellulose (BC) reinforced UV-curable ion gels using two-component solvents based on 1-butyl-3-methylimidazolium chloride or choline chloride combined with acrylic acid. Preservation of cellulose's crystalline and nanofibrous structure is demonstrated using wide-angle X-ray diffraction (WAXD) and atomic force microscopy (AFM). Rheological measurements reveal that cholinium-based systems, in comparison with imidazolium-based ones, are characterised with lower viscosity at low shear rates and improved stability against phase separation at high shear rates. Grafting of poly(acrylic acid) onto the surfaces of cellulose nanofibers during UV-induced polymerization of acrylic acid results in higher elongation at break for choline chloride-based compositions: 175% in comparison with 94% for imidazolium-based systems as well as enhanced mechanical properties in compression mode. As a result, cholinium-based BC ion gels containing acrylic acid can be considered as more suitable for 3D-printing of objects with improved mechanical properties due to increased dispersion stability and filler/matrix interaction.

10.
Nanomaterials (Basel) ; 11(8)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34443825

ABSTRACT

The prospective strategy for treatment of cancer is based on the application of nano-sized macromolecular carriers, which are able penetrate inside and can be accumulated within tumor tissue. In this work graft copolymers of cellulose and poly(methacrylic acid) has been prepared and tested as a nanocontainers for the delivery of drug to tumor. For this purpose, two derivatives of porphyrazine suitable for photodynamic cancer therapy were loaded into prepared polymer brush. Fluorescence imaging was applied for monitoring of accumulation of porphyrazine in the CT26 murine colon carcinoma. The selective accumulation of cellulose brush loaded with porphyrazine in tumor was demonstrated by fluorescence intensity contrast between the tumor area and normal tissues. The tumor growth rate after photodynamic therapy were assessed and inhibition of its growth was revealed.

11.
J Neurosci ; 41(33): 7003-7014, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34266899

ABSTRACT

The structural plasticity of dendritic spines is considered to be an important basis of synaptic plasticity, learning, and memory. Here, we induced input-specific structural LTP (sLTP) in single dendritic spines in organotypic hippocampal slices from mice of either sex and performed ultrastructural analyses of the spines using efficient correlative light and electron microscopy. We observed reorganization of the PSD nanostructure, such as perforation and segmentation, at 2-3, 20, and 120 min after sLTP induction. In addition, PSD and nonsynaptic axon-spine interface (nsASI) membrane expanded unevenly during sLTP. Specifically, the PSD area showed a transient increase at 2-3 min after sLTP induction. The PSD growth was to a degree less than spine volume growth at 2-3 min and 20 min after sLTP induction but became similar at 120 min. On the other hand, the nsASI area showed a profound and lasting expansion, to a degree similar to spine volume growth throughout the process. These rapid ultrastructural changes in PSD and surrounding membrane may contribute to rapid electrophysiological plasticity during sLTP.SIGNIFICANCE STATEMENT To understand the ultrastructural changes during synaptic plasticity, it is desired to efficiently image single dendritic spines that underwent structural plasticity in electron microscopy. We induced structural long-term potentiation (sLTP) in single dendritic spines by two-photon glutamate uncaging. We then identified the same spines at different phases of sLTP and performed ultrastructural analysis by using an efficient correlative light and electron microscopy method. We found that postsynaptic density undergoes dramatic modification in its structural complexity immediately after sLTP induction. Meanwhile, the nonsynaptic axon-spine interface area shows a rapid and sustained increase throughout sLTP. Our results indicate that the uneven modification of synaptic and nonsynaptic postsynaptic membrane might contribute to rapid electrophysiological plasticity during sLTP.


Subject(s)
Dendritic Spines/ultrastructure , Hippocampus/ultrastructure , Long-Term Potentiation , Post-Synaptic Density/ultrastructure , Animals , Axons/ultrastructure , Biolistics , Cell Membrane/ultrastructure , Dendritic Spines/physiology , Female , Glutamates/radiation effects , Image Processing, Computer-Assisted , Indoles/radiation effects , Male , Mice , Microscopy, Electron, Scanning , Photochemistry
12.
Sci Rep ; 11(1): 7771, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833289

ABSTRACT

Electron microscopy (EM) enables high-resolution visualization of protein distributions in biological tissues. For detection, gold nanoparticles are typically used as an electron-dense marker for immunohistochemically labeled proteins. Manual annotation of gold particle labels is laborious and time consuming, as gold particle counts can exceed 100,000 across hundreds of image segments to obtain conclusive data sets. To automate this process, we developed Gold Digger, a software tool that uses a modified pix2pix deep learning network capable of detecting and annotating colloidal gold particles in biological EM images obtained from both freeze-fracture replicas and plastic sections prepared with the post-embedding method. Gold Digger performs at near-human-level accuracy, can handle large images, and includes a user-friendly tool with a graphical interface for proof reading outputs by users. Manual error correction also helps for continued re-training of the network to improve annotation accuracy over time. Gold Digger thus enables rapid high-throughput analysis of immunogold-labeled EM data and is freely available to the research community.


Subject(s)
Brain/ultrastructure , Deep Learning , Gold Colloid/pharmacokinetics , Image Processing, Computer-Assisted/methods , Metal Nanoparticles/ultrastructure , Microscopy, Electron/methods , Animals , Mice
13.
Polymers (Basel) ; 14(1)2021 Dec 26.
Article in English | MEDLINE | ID: mdl-35012101

ABSTRACT

The route for the preparation of cellulose nanofiber dispersions from bacterial cellulose using ethylene glycol- or glycerol-based deep eutectic solvents (DES) is demonstrated. Choline chloride was used as a hydrogen bond acceptor and the effect of the combined influence of DES treatment and ultrasound on the thermal and mechanical properties of bacterial cellulose nanofibers (BC-NFs) is demonstrated. It was found that the maximal Young's modulus (9.2 GPa) is achieved for samples prepared using a combination of ethylene glycol-based DES and ultrasound treatment. Samples prepared with glycerol-based DES combined with ultrasound exhibit the maximal strength (132 MPa). Results on the mechanical properties are discussed based on the structural investigations that were performed using FTIR, Raman, WAXD, SEM and AFM measurements, as well as the determination of the degree of polymerization and the density of BC-NF packing during drying with the formation of paper. We propose that the disordering of the BC-NF surface structure along with the preservation of high crystallinity bulk are the key factors leading to the improved mechanical and thermal characteristics of prepared BC-NF-based papers.

14.
Polymers (Basel) ; 14(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35012157

ABSTRACT

Amphiphilic random and diblock thermoresponsive oligo(ethylene glycol)-based (co)polymers were synthesized via photoiniferter polymerization under visible light using trithiocarbonate as a chain transfer agent. The effect of solvent, light intensity and wavelength on the rate of the process was investigated. It was shown that blue and green LED light could initiate RAFT polymerization of macromonomers without an exogenous initiator at room temperature, giving bottlebrush polymers with low dispersity at sufficiently high conversions achieved in 1-2 h. The pseudo-living mechanism of polymerization and high chain-end fidelity were confirmed by successful chain extension. Thermoresponsive properties of the copolymers in aqueous solutions were studied via turbidimetry and laser light scattering. Random copolymers of methoxy- and alkoxy oligo(ethylene glycol) methacrylates of a specified length formed unimolecular micelles in water with a hydrophobic core consisting of a polymer backbone and alkyl groups and a hydrophilic oligo(ethylene glycol) shell. In contrast, the diblock copolymer formed huge multimolecular micelles.

15.
Carbohydr Polym ; 197: 548-557, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30007646

ABSTRACT

Chitosan (CS) films containing deep eutectic solvent (DES) based on malonic acid (MA) and choline chloride (ChCl) were successfully prepared by solution casting method by using DES content ranging from 0 to 82 wt%. A strong interaction of CS with the components of DES was demonstrated by analyses of water sorption isotherms, atomic force microscopy and FTIR results. The plasticizing effect of the MA and ChCl mixture on the CS matrix was shown by static bulk mechanical measurements, thermal analysis and quantitative nanomechanical mapping (QNM). Elongation at break increased from 3 to 62% at increase of DES content from 0 to 67 wt%, while further increase of DES content led to the decreasing of maximal elongation. Introduction of DES into CS films led to the appearance of glass transition temperature in the region +2 - -2.3 °C. QNM results indicated homogeneity of the films containing up to 75 wt% of DES.

16.
PLoS One ; 13(7): e0199589, 2018.
Article in English | MEDLINE | ID: mdl-29975722

ABSTRACT

Synaptic plasticity, the cellular basis for learning and memory, is mediated by a complex biochemical network of signaling proteins. These proteins are compartmentalized in dendritic spines, the tiny, bulbous, post-synaptic structures found on neuronal dendrites. The ability to screen a high number of molecular targets for their effect on dendritic spine structural plasticity will require a high-throughput imaging system capable of stimulating and monitoring hundreds of dendritic spines in various conditions. For this purpose, we present a program capable of automatically identifying dendritic spines in live, fluorescent tissue. Our software relies on a machine learning approach to minimize any need for parameter tuning from the user. Custom thresholding and binarization functions serve to "clean" fluorescent images, and a neural network is trained using features based on the relative shape of the spine perimeter and its corresponding dendritic backbone. Our algorithm is rapid, flexible, has over 90% accuracy in spine detection, and bundled with our user-friendly, open-source, MATLAB-based software package for spine analysis.


Subject(s)
Dendritic Spines , Machine Learning , Neurons/cytology , Software , Algorithms , Animals , Image Processing, Computer-Assisted , Mice , Microscopy , Neuronal Plasticity
17.
eNeuro ; 5(3)2018.
Article in English | MEDLINE | ID: mdl-29911178

ABSTRACT

Pyramidal neurons in hippocampal area CA2 are distinct from neighboring CA1 in that they resist synaptic long-term potentiation (LTP) at CA3 Schaffer collateral synapses. Regulator of G protein signaling 14 (RGS14) is a complex scaffolding protein enriched in CA2 dendritic spines that naturally blocks CA2 synaptic plasticity and hippocampus-dependent learning, but the cellular mechanisms by which RGS14 gates LTP are largely unexplored. A previous study has attributed the lack of plasticity to higher rates of calcium (Ca2+) buffering and extrusion in CA2 spines. Additionally, a recent proteomics study revealed that RGS14 interacts with two key Ca2+-activated proteins in CA2 neurons: calcium/calmodulin and CaMKII. Here, we investigated whether RGS14 regulates Ca2+ signaling in its host CA2 neurons. We found that the nascent LTP of CA2 synapses caused by genetic knockout (KO) of RGS14 in mice requires Ca2+-dependent postsynaptic signaling through NMDA receptors, CaMK, and PKA, revealing similar mechanisms to those in CA1. We report that RGS14 negatively regulates the long-term structural plasticity of dendritic spines of CA2 neurons. We further show that wild-type (WT) CA2 neurons display significantly attenuated spine Ca2+ transients during structural plasticity induction compared with the Ca2+ transients from CA2 spines of RGS14 KO mice and CA1 controls. Finally, we demonstrate that acute overexpression of RGS14 is sufficient to block spine plasticity, and elevating extracellular Ca2+ levels restores plasticity to RGS14-expressing neurons. Together, these results demonstrate for the first time that RGS14 regulates plasticity in hippocampal area CA2 by restricting Ca2+ elevations in CA2 spines and downstream signaling pathways.


Subject(s)
CA2 Region, Hippocampal/physiology , Calcium Signaling , Long-Term Potentiation , Pyramidal Cells/physiology , RGS Proteins/physiology , Synapses/physiology , Animals , Calcium-Calmodulin-Dependent Protein Kinases/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Dendritic Spines/physiology , Female , Male , Mice, Knockout , Receptors, N-Methyl-D-Aspartate
18.
Polymers (Basel) ; 10(11)2018 Nov 03.
Article in English | MEDLINE | ID: mdl-30961147

ABSTRACT

Segmented poly(urethane-imide)s (PUIs) were synthesized by polyaddition reaction and applied for preparation of membranes. Tolylene-2,4-diisocyanate, pyromellitic dianhydride, and m-phenylenediamine for chain extension were used to form hard aromatic blocks. Polycaprolactone diols with molecular weights equal to 530 and 2000 g mol-1 were chosen as soft segments. The effect of the length of soft segments on the structure, morphology, and transport properties of segmented poly(urethane-imide) membranes were studied using atomic force microscopy, small-angle and wide-angle X-ray scattering, and pervaporation experiments. It was found that a copolymer with a shorter soft segment (530 g mol-1) consists of soft domains in a hard matrix, while the introduction of polycaprolactone blocks with higher molecular weight (2000 g mol-1) leads to the formation of hard domains in a soft matrix. Additionally, the introduction of hard segments prevents crystallization of polycaprolactone. Transport properties of membranes based on segmented PUIs containing soft segments of different length were tested for pervaporation of a model mixture of propanol/water with 20 wt % H2O content. It was found that a membrane based on segmented PUIs containing longer soft segments demonstrates higher flux (8.8 kg µm m-2 h-1) and selectivity (179) toward water in comparison with results for pure polycaprolactone reported in literature. The membrane based on segmented PUIs with 530 g mol-1 soft segment has a lower flux (5.1 kg µm m-2 h-1) and higher selectivity (437).

19.
PLoS One ; 12(1): e0170586, 2017.
Article in English | MEDLINE | ID: mdl-28114380

ABSTRACT

Long-term structural plasticity of dendritic spines plays a key role in synaptic plasticity, the cellular basis for learning and memory. The biochemical step is mediated by a complex network of signaling proteins in spines. Two-photon imaging techniques combined with two-photon glutamate uncaging allows researchers to induce and quantify structural plasticity in single dendritic spines. However, this method is laborious and slow, making it unsuitable for high throughput screening of factors necessary for structural plasticity. Here we introduce a MATLAB-based module built for Scanimage to automatically track, image, and stimulate multiple dendritic spines. We implemented an electrically tunable lens in combination with a drift correction algorithm to rapidly and continuously track targeted spines and correct sample movements. With a straightforward user interface to design custom multi-position experiments, we were able to adequately image and produce targeted plasticity in multiple dendritic spines using glutamate uncaging. Our methods are inexpensive, open source, and provides up to a five-fold increase in throughput for quantifying structural plasticity of dendritic spines.


Subject(s)
Automation , Dendritic Spines/radiation effects , Light , Neuronal Plasticity/physiology , Animals , Dendritic Spines/physiology , Mice , Mice, Inbred C57BL
20.
Polymers (Basel) ; 9(7)2017 Jul 06.
Article in English | MEDLINE | ID: mdl-30970946

ABSTRACT

It is known that structure of the interface between inorganic nanoparticles and polymers significantly influences properties of a polymer⁻inorganic composite. At the same time, amount of experimental researches on the structure and properties of material near the inorganic-polymer interface is low. In this work, we report for the first time the investigation of nanomechanical properties and maps of adhesion of material near the inorganic-polymer interface for the polyheteroarylene nanocomposites based on semi-crystalline poly[4,4'-bis (4″-aminophenoxy)diphenyl]imide 1,3-bis (3',4-dicarboxyphenoxy) benzene, modified by ZrO2 nanostars. Experiments were conducted using quantitative nanomechanical mapping (QNM) mode of atomic force microscopy (AFM) at the surface areas where holes were formed after falling out of inorganic particles. It was found that adhesion of AFM cantilever to the polymer surface is higher inside the hole than outside. This can be attributed to the presence of polar groups near ZrO2 nanoparticle. QNM measurements revealed that polymer matrix has increased rigidity in the vicinity of the nanoparticles. Influence of ZrO2 nanoparticles on the structure and thermal properties of semi-crystalline polyheteroarylene matrix was studied with wide-angle X-ray scattering, scanning electron microscopy, and differential scanning calorimetry.

SELECTION OF CITATIONS
SEARCH DETAIL
...