Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 15(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38391880

ABSTRACT

This study examined the effectiveness of coating demineralized bone matrix (DBM) with amorphous calcium phosphate (DBM + CaP), as well as a composite of DBM, calcium phosphate, and serum albumin (DBM + CaP + BSA). The intact structure of DBM promotes the transformation of amorphous calcium phosphate (CaP) into dicalcium phosphate dihydrate (DCPD) with a characteristic plate shape and particle size of 5-35 µm. The inclusion of BSA in the coating resulted in a better and more uniform distribution of CaP on the surface of DBM trabeculae. MG63 cells showed that both the obtained forms of CaP and its complex with BSA did not exhibit cytotoxicity up to a concentration of 10 mg/mL in vitro. Ectopic (subcutaneous) implantation in rats revealed pronounced biocompatibility, as well as strong osteoconductive, osteoinductive, and osteogenic effects for both DBM + CaP and DBM + CaP + BSA, but more pronounced effects for DBM + CaP + BSA. In addition, for the DBM + CaP + BSA samples, there was a pronounced full physiological intrafibrillar biomineralization and proangiogenic effect with the formation of bone-morrow-like niches, accompanied by pronounced processes of intramedullary hematopoiesis, indicating a powerful osteogenic effect of this composite.

2.
Biomedicines ; 12(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38397865

ABSTRACT

Creating bioactive materials for bone tissue regeneration and augmentation remains a pertinent challenge. One of the most promising and rapidly advancing approaches involves the use of low-temperature ceramics that closely mimic the natural composition of the extracellular matrix of native bone tissue, such as Hydroxyapatite (HAp) and its phase precursors (Dicalcium Phosphate Dihydrate-DCPD, Octacalcium Phosphate-OCP, etc.). However, despite significant scientific interest, the current knowledge and understanding remain limited regarding the impact of these ceramics not only on reparative histogenesis processes but also on the immunostimulation and initiation of local aseptic inflammation leading to material rejection. Using the stable cell models of monocyte-like (THP-1ATRA) and macrophage-like (THP-1PMA) cells under the conditions of LPS-induced model inflammation in vitro, the influence of DCPD, OCP, and HAp on cell viability, ROS and intracellular NO production, phagocytosis, and the secretion of pro-inflammatory cytokines was assessed. The results demonstrate that all investigated ceramic particles exhibit biological activity toward human macrophage and monocyte cells in vitro, potentially providing conditions necessary for bone tissue restoration/regeneration in the peri-implant environment in vivo. Among the studied ceramics, DCPD appears to be the most preferable for implantation in patients with latent inflammation or unpredictable immune status, as this ceramic had the most favorable overall impact on the investigated cellular models.

3.
Biomimetics (Basel) ; 8(1)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36975321

ABSTRACT

Bone grafts with a high potential for osseointegration, capable of providing a complete and effective regeneration of bone tissue, remain an urgent and unresolved issue. The presented work proposes an approach to develop composite biomimetic bone material for reconstructive surgery by deposition (remineralization) on the surface of high-purity, demineralized bone collagen matrix calcium phosphate layers. Histological and elemental analysis have shown reproduction of the bone tissue matrix architectonics, and a high-purity degree of the obtained collagen scaffolds; the cell culture and confocal microscopy have demonstrated a high biocompatibility of the materials obtained. Adsorption spectroscopy, scanning electron microscopy, microcomputed tomography (microCT) and infrared spectroscopy, and X-ray diffraction have proven the efficiency of the deposition of calcium phosphates on the surface of bone collagen scaffolds. Cell culture and confocal microscopy methods have shown high biocompatibility of both demineralized and remineralized bone matrices. In the model of heterotopic implantation in rats, at the term of seven weeks, an intensive intratrabecular infiltration of calcium phosphate precipitates, and a pronounced synthetic activity of osteoblast remodeling and rebuilding implanted materials, were revealed in remineralized bone collagen matrices in contrast to demineralized ones. Thus, remineralization of highly purified demineralized bone matrices significantly enhanced their osteostimulating ability. The data obtained are of interest for the creation of new highly effective osteoplastic materials for bone tissue regeneration and augmentation.

4.
Int J Mol Sci ; 22(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34884557

ABSTRACT

Octacalcium phosphate (OCP, Ca8H2(PO4)6·5H2O) is known to be a possible precursor of biological hydroxyapatite formation of organic bone tissue. OCP has higher biocompatibility and osseointegration rate compared to other calcium phosphates. In this work, the synthesis of low-temperature calcium phosphate compounds and substituted forms of those at physiological temperatures is shown. Strontium is used to improve bioactive properties of the material. Strontium was inserted into the OCP structure by ionic substitution in solutions. The processes of phase formation of low-temperature OCP with theoretical substitution of strontium for calcium up to 50 at.% in conditions close to physiological, i.e., temperature 35-37 °C and normal pressure, were described. The effect of strontium substitution range on changes in the crystal lattice of materials, the microstructural features, surface morphology and biological properties in vitro has been established. The results of the study indicate the effectiveness of using strontium in OCP for improving biocompatibility of OCP based composite materials intended for bone repair.


Subject(s)
Biocompatible Materials/pharmacology , Bone Regeneration , Bone and Bones/cytology , Calcium Phosphates/chemical synthesis , Calcium Phosphates/pharmacology , Mesoderm/cytology , Animals , Biocompatible Materials/chemical synthesis , Bone and Bones/drug effects , Durapatite/chemistry , In Vitro Techniques , Mesoderm/drug effects , Mice , Mice, Inbred C3H , Reactive Oxygen Species/metabolism , Strontium/chemistry , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...