Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Science ; 382(6676): 1276-1281, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38096384

ABSTRACT

The pronounced growth in livestock populations since the 1950s has altered the epidemiological and evolutionary trajectory of their associated pathogens. For example, Marek's disease virus (MDV), which causes lymphoid tumors in chickens, has experienced a marked increase in virulence over the past century. Today, MDV infections kill >90% of unvaccinated birds, and controlling it costs more than US$1 billion annually. By sequencing MDV genomes derived from archeological chickens, we demonstrate that it has been circulating for at least 1000 years. We functionally tested the Meq oncogene, one of 49 viral genes positively selected in modern strains, demonstrating that ancient MDV was likely incapable of driving tumor formation. Our results demonstrate the power of ancient DNA approaches to trace the molecular basis of virulence in economically relevant pathogens.


Subject(s)
Chickens , Herpesvirus 2, Gallid , Marek Disease , Animals , Chickens/virology , Herpesvirus 2, Gallid/classification , Herpesvirus 2, Gallid/genetics , Herpesvirus 2, Gallid/pathogenicity , Lymphoma/virology , Marek Disease/history , Marek Disease/virology , Virulence/genetics , Phylogeny
2.
J Evol Biol ; 36(6): 847-873, 2023 06.
Article in English | MEDLINE | ID: mdl-37255207

ABSTRACT

Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.


Subject(s)
Adaptive Immunity , Biological Evolution , Animals , Adaptive Immunity/genetics , Vertebrates/genetics , Evolution, Molecular , Immunity, Innate/genetics
3.
ISME J ; 17(2): 215-226, 2023 02.
Article in English | MEDLINE | ID: mdl-36319706

ABSTRACT

Wildlife harbour pathogens that can harm human or livestock health and are the source of most emerging infectious diseases. It is rarely considered how changes in wildlife population age-structures or how age-stratified behaviours might alter the level of pathogen detection within a species, or risk of spillover to other species. Micro-organisms that occur in healthy animals can be an important model for understanding and predicting the dynamics of pathogens of greater health concern, which are hard to study in wild populations due to their relative rarity. We therefore used a metagenomic approach to jointly characterise viral and prokaryotic carriage in faeces collected from a healthy wild bird population (Cygnus olor; mute swan) that has been subject to long-term study. Using 223 samples from known individuals allowed us to compare differences in prokaryotic and eukaryotic viral carriage between adults and juveniles at an unprecedented level of detail. We discovered and characterised 77 novel virus species, of which 21% belong putatively to bird-infecting families, and described the core prokaryotic microbiome of C. olor. Whilst no difference in microbiota diversity was observed between juveniles and adult individuals, 50% (4/8) of bird-infecting virus families (picornaviruses, astroviruses, adenoviruses and bornaviruses) and 3.4% (9/267) of prokaryotic families (including Helicobacteraceae, Spirochaetaceae and Flavobacteriaceae families) were differentially abundant and/or prevalent between juveniles and adults. This indicates that perturbations that affect population age-structures of wildlife could alter circulation dynamics and spillover risk of microbes, potentially including pathogens.


Subject(s)
Animals, Wild , Anseriformes , Humans , Animals , Birds , Metagenome
4.
Poult Sci ; 101(10): 102048, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35952602

ABSTRACT

Contaminated chicken meat is a major source of human Campylobacteriosis and rates of infection remain high, despite efforts to limit the colonisation of broiler (meat) chicken flocks on farms. Using conventional testing methods of culture or qPCR, Campylobacter is typically detected amongst broiler flocks from 3 wk of age, leading to the assumption that infection is introduced horizontally into chicken rearing houses at this time. In this study, we use parallel sequencing of a fragment of the Campylobacter outer membrane protein, encoded by the porA gene, to test for presence of Campylobacter DNA amongst fresh fecal samples collected from broiler flocks aged 23 to 28 d. Campylobacter DNA was detected in all of the 290 samples tested using the porA target, and in 48% of samples using 16S bacterial profiling, irrespective of whether or not Campylobacter could be detected using conventional qPCR thresholds. A single porAf2 variant was predominant among flocks that would be determined to be Campylobacter 'positive' by conventional means, but a diverse pattern was seen among flocks that were Campylobacter 'negative'. The ability to routinely detect low levels of Campylobacter amongst broiler flocks at a much earlier age than would conventionally be identified requires a re-examination of how and when biosecurity measures are best applied for live birds. In addition, it may be useful to investigate why single Campylobacter variants proliferate in some broiler flocks and not others.


Subject(s)
Campylobacter Infections , Campylobacter , Poultry Diseases , Animals , Campylobacter/genetics , Campylobacter Infections/diagnosis , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Chickens/microbiology , Membrane Proteins , Poultry Diseases/diagnosis , Poultry Diseases/microbiology
5.
Nat Commun ; 13(1): 3912, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853876

ABSTRACT

Penguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth.


Subject(s)
Spheniscidae , Animals , Biological Evolution , Fossils , Genome , Genomics , Phylogeny , Spheniscidae/genetics
6.
RNA ; 28(8): 1089-1109, 2022 08.
Article in English | MEDLINE | ID: mdl-35675984

ABSTRACT

The ability of zinc finger antiviral protein (ZAP) to recognize and respond to RNA virus sequences with elevated frequencies of CpG dinucleotides has been proposed as a functional part of the vertebrate innate immune antiviral response. It has been further proposed that ZAP activity shapes compositions of cytoplasmic mRNA sequences to avoid self-recognition, particularly mRNAs for interferons (IFNs) and IFN-stimulated genes (ISGs) expressed during the antiviral state. We investigated whether restriction of the replication of mutants of influenza A virus (IAV) and the echovirus 7 (E7) replicon with high CpG and UpA frequencies varied in different species of mammals and birds. Cell lines from different bird orders showed substantial variability in restriction of CpG-high mutants of IAV and E7 replicons, whereas none restricted UpA-high mutants, in marked contrast to universal restriction of both mutants in mammalian cells. Dinucleotide representation in ISGs and IFN genes was compared with those of cellular transcriptomes to determine whether potential differences in inferred ZAP activity between species shaped dinucleotide compositions of highly expressed genes during the antiviral state. While mammalian type 1 IFN genes typically showed often profound suppression of CpG and UpA frequencies, there was no oversuppression of either in ISGs in any species, irrespective of their ability to restrict CpG- or UpA-high mutants. Similarly, genome sequences of mammalian and avian RNA viruses were compositionally equivalent, as were IAV strains recovered from ducks, chickens and humans. Overall, we found no evidence for host variability in inferred ZAP function shaping host or viral transcriptome compositions.


Subject(s)
Influenza A virus , Transcriptome , Animals , Antiviral Agents/pharmacology , Chickens/genetics , Humans , Influenza A virus/genetics , Influenza A virus/metabolism , Mammals/genetics , RNA, Messenger , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Replication/genetics
7.
Sci Rep ; 12(1): 8934, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35624125

ABSTRACT

Malaria parasites such as Plasmodium falciparum have exerted formidable selective pressures on the human genome. Of the human genetic variants associated with malaria protection, beta thalassaemia (a haemoglobinopathy) was the earliest to be associated with malaria prevalence. However, the malaria protective properties of beta thalassaemic erythrocytes remain unclear. Here we studied the mechanics and surface protein expression of beta thalassaemia heterozygous erythrocytes, measured their susceptibility to P. falciparum invasion, and calculated the energy required for merozoites to invade them. We found invasion-relevant differences in beta thalassaemic cells versus matched controls, specifically: elevated membrane tension, reduced bending modulus, and higher levels of expression of the major invasion receptor basigin. However, these differences acted in opposition to each other with respect to their likely impact on invasion, and overall we did not observe beta thalassaemic cells to have lower P. falciparum invasion efficiency for any of the strains tested.


Subject(s)
Malaria, Falciparum , Malaria , beta-Thalassemia , Erythrocyte Membrane/parasitology , Heterozygote , Humans , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , beta-Thalassemia/genetics
8.
PLoS Negl Trop Dis ; 16(4): e0010312, 2022 04.
Article in English | MEDLINE | ID: mdl-35446843

ABSTRACT

Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into historical health, sanitation, hygiene, dietary and culinary practices, as well as other factors. Differences in the prevalence of helminths over time may help us understand factors that affected the rate of infection of these parasites in past populations. While communal deposits often contain relatively high numbers of parasite eggs, these cannot be used to calculate prevalence rates, which are a key epidemiological measure of infection. The prevalence of intestinal helminths was investigated through time in England, based on analysis of 464 human burials from 17 sites, dating from the Prehistoric to Industrial periods. Eggs from two faecal-oral transmitted nematodes (Ascaris sp. and Trichuris sp.) and the food-derived cestodes (Taenia spp. and Diphyllobothrium latum syn Dibothriocephalus latus) were identified, although only Ascaris was detected at a high frequency. The changing prevalence of nematode infections can be attributed to changes in effective sanitation or other factors that affect these faecal-oral transmitted parasites and the presence of cestode infections reflect dietary and culinary preferences. These results indicate that the impact of helminth infections on past populations varied over time, and that some locations witnessed a dramatic reduction in parasite prevalence during the industrial era (18th-19th century), whereas other locations continued to experience high prevalence levels. The factors underlying these reductions and the variation in prevalence provide a key historical context for modern anthelmintic programs.


Subject(s)
Diphyllobothrium , Helminthiasis , Helminths , Intestinal Diseases, Parasitic , Animals , Ascaris , Feces/parasitology , Helminthiasis/epidemiology , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Prevalence , United Kingdom/epidemiology
9.
Mol Biol Evol ; 39(1)2022 01 07.
Article in English | MEDLINE | ID: mdl-34897511

ABSTRACT

Penguins (Sphenisciformes) are an iconic order of flightless, diving seabirds distributed across a large latitudinal range in the Southern Hemisphere. The extensive area over which penguins are endemic is likely to have fostered variation in pathogen pressure, which in turn will have imposed differential selective pressures on the penguin immune system. At the front line of pathogen detection and response, the Toll-like receptors (TLRs) provide insight into host evolution in the face of microbial challenge. TLRs respond to conserved pathogen-associated molecular patterns and are frequently found to be under positive selection, despite retaining specificity for defined agonist classes. We undertook a comparative immunogenetics analysis of TLRs for all penguin species and found evidence of adaptive evolution that was largely restricted to the cell surface-expressed TLRs, with evidence of positive selection at, or near, key agonist-binding sites in TLR1B, TLR4, and TLR5. Intriguingly, TLR15, which is activated by fungal products, appeared to have been pseudogenized multiple times in the Eudyptes spp., but a full-length form was present as a rare haplotype at the population level. However, in vitro analysis revealed that even the full-length form of Eudyptes TLR15 was nonfunctional, indicating an ancestral cryptic pseudogenization prior to its eventual disruption multiple times in the Eudyptes lineage. This unusual pseudogenization event could provide an insight into immune adaptation to fungal pathogens such as Aspergillus, which is responsible for significant mortality in wild and captive bird populations.


Subject(s)
Spheniscidae , Animals , Evolution, Molecular , Selection, Genetic , Spheniscidae/genetics , Toll-Like Receptors/genetics
10.
Front Immunol ; 13: 1052297, 2022.
Article in English | MEDLINE | ID: mdl-36685492

ABSTRACT

Microbial colonisation is paramount to the normal development of the immune system, particularly at mucosal sites. However, the relationships between the microbiome and the adaptive immune repertoire have mostly been explored in rodents and humans. Here, we report a high-throughput sequencing analysis of the chicken TCRß repertoire and the influences of microbial colonisation on tissue-resident TCRß+ cells. The results reveal that the microbiome is an important driver of TCRß diversity in both intestinal tissues and the bursa of Fabricius, but not in the spleen. Of note, public TCRß sequences (shared across individuals) make a substantial contribution to the repertoire. Additionally, different tissues exhibit biases in terms of their V family and J gene usage, and these effects were influenced by the gut-associated microbiome. TCRß clonal expansions were identified in both colonised and germ-free birds, but differences between the groups were indicative of an influence of the microbiota. Together, these findings provide an insight into the avian adaptive immune system and the influence of the microbiota on the TCRß repertoire.


Subject(s)
Chickens , Immune System , Humans , Animals , Intestines
12.
BMC Genomics ; 22(1): 719, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34610803

ABSTRACT

BACKGROUND: Despite increasing interest in γδ T cells and their non-classical behaviour, most studies focus on animals with low numbers of circulating γδ T cells, such as mice and humans. Arguably, γδ T cell functions might be more prominent in chickens where these cells form a higher proportion of the circulatory T cell compartment. The TCR repertoire defines different subsets of γδ T cells, and such analysis is facilitated by well-annotated TCR loci. γδ T cells are considered at the cusp of innate and adaptive immunity but most functions have been identified in γδ low species. A deeper understanding of TCR repertoire biology in γδ high and γδ low animals is critical for defining the evolution of the function of γδ T cells. Repertoire dynamics will reveal populations that can be classified as innate-like or adaptive-like as well as those that straddle this definition. RESULTS: Here, a recent discrepancy in the structure of the chicken TCR gamma locus is resolved, demonstrating that tandem duplication events have shaped the evolution of this locus. Importantly, repertoire sequencing revealed large differences in the usage of individual TRGV genes, a pattern conserved across multiple tissues, including thymus, spleen and the gut. A single TRGV gene, TRGV3.3, with a highly diverse private CDR3 repertoire dominated every tissue in all birds. TRGV usage patterns were partly explained by the TRGV-associated recombination signal sequences. Public CDR3 clonotypes represented varying proportions of the repertoire of TCRs utilising different TRGVs, with one TRGV dominated by super-public clones present in all birds. CONCLUSIONS: The application of repertoire analysis enabled functional annotation of the TCRG locus in a species with a high circulating γδ phenotype. This revealed variable usage of TCRGV genes across multiple tissues, a pattern quite different to that found in γδ low species (human and mouse). Defining the repertoire biology of avian γδ T cells will be key to understanding the evolution and functional diversity of these enigmatic lymphocytes in an animal that is numerically more reliant on them. Practically, this will reveal novel ways in which these cells can be exploited to improve health in medical and veterinary contexts.


Subject(s)
Chickens , Genome , Receptors, Antigen, T-Cell, gamma-delta , Animals , Chickens/genetics , Genomics , Receptors, Antigen, T-Cell, gamma-delta/genetics , T-Lymphocytes
13.
Poult Sci ; 100(11): 101420, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34607156

ABSTRACT

Using data on rearing and welfare metrics of multiple commercial broiler flocks, we investigate how welfare measures such as hock burn, mortality, and pododermatitis, among others, impact the likelihood of a flock becoming colonized by Campylobacter. Using both logistic regression and Bayesian networks, we show that, while some welfare metrics were weakly related to Campylobacter colonization, evidence could not be found to suggest that these metrics directly exacerbated Campylobacter colonization, rather that they were both symptoms of the same parent variable - the managing company. Observed dependency on the management of the flock suggested that yet-undiscovered differences in rearing practice were the principal factor explaining both poor bird welfare and increased risk of Campylobacter, suggesting that action can be taken to improve both these factors simultaneously.


Subject(s)
Campylobacter Infections , Campylobacter , Poultry Diseases , Animals , Bayes Theorem , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Chickens , Poultry Diseases/prevention & control
14.
Cytometry A ; 99(1): 81-89, 2021 01.
Article in English | MEDLINE | ID: mdl-34038035

ABSTRACT

The COVID-19 pandemic has brought biosafety to the forefront of many life sciences. The outbreak has compelled research institutions to re-evaluate biosafety practices and potential at-risk areas within research laboratories and more specifically within Shared Resource Laboratories (SRLs). In flow cytometry facilities, biological safety assessment encompasses known hazards based on the biological sample and associated risk group, as well as potential or unknown hazards, such as aerosol generation and instrument "failure modes." Cell sorting procedures undergo clearly defined biological safety assessments and adhere to well-established biosafety guidelines that help to protect SRL staff and users against aerosol exposure. Conversely, benchtop analyzers are considered low risk due to their low sample pressure and enclosed fluidic systems, although there is little empirical evidence to support this assumption of low risk. To investigate this, we evaluated several regions on analyzers using the Cyclex-d microsphere assay, a recently established method for cell sorter aerosol containment testing. We found that aerosol and/or droplet hazards were detected on all benchtop analyzers predominantly during operation in "failure modes." These results indicate that benchtop analytical cytometers present a more complicated set of risks than are commonly appreciated.


Subject(s)
COVID-19/prevention & control , Cell Separation/instrumentation , Containment of Biohazards , Equipment Contamination/prevention & control , Flow Cytometry/instrumentation , Laboratory Personnel , Occupational Exposure/adverse effects , Occupational Health , Aerosols , COVID-19/transmission , Humans , Risk Assessment , Risk Factors
15.
Cytometry A ; 99(1): 68-80, 2021 01.
Article in English | MEDLINE | ID: mdl-33289290

ABSTRACT

Biosafety has always been an important aspect of daily work in any research institution, particularly for cytometry Shared Resources Laboratories (SRLs). SRLs are common-use spaces that facilitate the sharing of knowledge, expertise, and ideas. This sharing inescapably involves contact and interaction of all those within this working environment on a daily basis. The current pandemic caused by SARS-CoV-2 has prompted the re-evaluation of many policies governing the operations of SRLs. Here we identify and review the unique challenges SRLs face in maintaining biosafety standards, highlighting the potential risks associated with not only cytometry instrumentation and samples, but also the people working with them. We propose possible solutions to safety issues raised by the COVID-19 pandemic and provide tools for facilities to adapt to evolving guidelines and future challenges.


Subject(s)
COVID-19/epidemiology , Containment of Biohazards/trends , Laboratories/trends , COVID-19/prevention & control , COVID-19/transmission , Containment of Biohazards/standards , Flow Cytometry , Humans , Laboratories/standards , Risk Assessment/standards , Risk Assessment/trends
16.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190570, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33012232

ABSTRACT

Enteric helminths are common parasites in many parts of the world and in the past were much more widespread both geographically and socially. Many enteric helminths are relatively long-lived in the human host, often benign or of low pathogenicity while producing large numbers of environmentally resistant eggs voided in the faeces or found associated with individual remains (skeletons and mummies). The combination of helminth characters offers opportunities to the field of historical pathogen research that are quite different to that of some of the more intensively studied high impact pathogens. Historically, a wealth of studies has employed microscopic techniques to diagnose infection using the morphology of the helminth eggs. More recently, various ancient DNA (aDNA) approaches have been applied in the archaeoparasitological context and these are revolutionizing the field, allowing much more specific diagnosis as well as interrogating the epidemiology of helminths. These advances have enhanced the potential for the field to provide unique information on past populations including using diseases to consider many aspects of life (e.g. sanitation, hygiene, diet, culinary practices and other aspects of society). Here, we consider the impact of helminth archaeoparasitology and more specifically the impact and potential for application of aDNA technologies as a part of the archaeologists' toolkit. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Subject(s)
Archaeology/methods , DNA, Ancient/analysis , Helminths/genetics , Intestinal Diseases, Parasitic/history , Animals , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, Ancient , History, Medieval , Humans , Intestinal Diseases, Parasitic/diagnosis , Intestinal Diseases, Parasitic/parasitology
17.
Viruses ; 12(9)2020 09 16.
Article in English | MEDLINE | ID: mdl-32947826

ABSTRACT

There is growing interest in uncovering the viral diversity present in wild animal species. The remote Antarctic region is home to a wealth of uncovered microbial diversity, some of which is associated with its megafauna, including penguin species, the dominant avian biota. Penguins interface with a number of other biota in their roles as marine mesopredators and several species overlap in their ranges and habitats. To characterize the circular single-stranded viruses related to those in the phylum Cressdnaviricota from these environmental sentinel species, cloacal swabs (n = 95) were obtained from King Penguins in South Georgia, and congeneric Adélie Penguins, Chinstrap Penguins, and Gentoo Penguins across the South Shetland Islands and Antarctic Peninsula. Using a combination of high-throughput sequencing, abutting primers-based PCR recovery of circular genomic elements, cloning, and Sanger sequencing, we detected 97 novel sequences comprising 40 ssDNA viral genomes and 57 viral-like circular molecules from 45 individual penguins. We present their detection patterns, with Chinstrap Penguins harboring the highest number of new sequences. The novel Antarctic viruses identified appear to be host-specific, while one circular molecule was shared between sympatric Chinstrap and Gentoo Penguins. We also report viral genotype sharing between three adult-chick pairs, one in each Pygoscelid species. Sequence similarity network approaches coupled with Maximum likelihood phylogenies of the clusters indicate the 40 novel viral genomes do not fall within any known viral families and likely fall within the recently established phylum Cressdnaviricota based on their replication-associated protein sequences. Similarly, 83 capsid protein sequences encoded by the viruses or viral-like circular molecules identified in this study do not cluster with any of those encoded by classified viral groups. Further research is warranted to expand knowledge of the Antarctic virome and would help elucidate the importance of viral-like molecules in vertebrate host evolution.


Subject(s)
Phylogeny , Spheniscidae/virology , Viruses/classification , Viruses/isolation & purification , Animals , Antarctic Regions , Capsid Proteins/genetics , Genome, Viral , Georgia , High-Throughput Nucleotide Sequencing , Islands , Viruses/genetics
18.
PLoS Negl Trop Dis ; 14(8): e0008600, 2020 08.
Article in English | MEDLINE | ID: mdl-32853225

ABSTRACT

Helminth infections are among the World Health Organization's top neglected diseases with significant impact in many Less Economically Developed Countries. Despite no longer being endemic in Europe, the widespread presence of helminth eggs in archaeological deposits indicates that helminths represented a considerable burden in past European populations. Prevalence of infection is a key epidemiological feature that would influence the elimination of endemic intestinal helminths, for example, low prevalence rates may have made it easier to eliminate these infections in Europe without the use of modern anthelminthic drugs. To determine historical prevalence rates we analysed 589 grave samples from 7 European sites dated between 680 and 1700 CE, identifying two soil transmitted nematodes (Ascaris spp. and Trichuris trichiura) at all locations, and two food derived cestodes (Diphyllobothrium latum and Taenia spp.) at 4 sites. The rates of nematode infection in the medieval populations (1.5 to 25.6% for T. trichiura; 9.3-42.9% for Ascaris spp.) were comparable to those reported within modern endemically infected populations. There was some evidence of higher levels of nematode infection in younger individuals but not at all sites. The genetic diversity of T. trichiura ITS-1 in single graves was variable but much lower than with communal medieval latrine deposits. The prevalence of food derived cestodes was much lower (1.0-9.9%) than the prevalence of nematodes. Interestingly, sites that contained Taenia spp. eggs also contained D. latum which may reflect local culinary practices. These data demonstrate the importance of helminth infections in Medieval Europe and provide a baseline for studies on the epidemiology of infection in historical and modern contexts. Since the prevalence of medieval STH infections mirror those in modern endemic countries the factors affecting STH decline in Europe may also inform modern intervention campaigns.


Subject(s)
Helminthiasis/epidemiology , Intestines/parasitology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Anthelmintics/therapeutic use , Ascariasis/epidemiology , Ascariasis/transmission , Ascaris , Child , Child, Preschool , Europe/epidemiology , Female , Genetic Variation , Helminthiasis/drug therapy , Helminthiasis/transmission , Helminths/genetics , Humans , Infant , Infant, Newborn , Male , Middle Aged , Neglected Diseases/epidemiology , Nematoda , Prevalence , Soil/parasitology , Toilet Facilities , Trichuriasis/epidemiology , Trichuriasis/transmission , Trichuris , Young Adult
19.
Viruses ; 12(8)2020 08 06.
Article in English | MEDLINE | ID: mdl-32781620

ABSTRACT

Circoviruses infect a variety of animal species and have small (~1.8-2.2 kb) circular single-stranded DNA genomes. Recently a penguin circovirus (PenCV) was identified associated with an Adélie Penguin (Pygoscelis adeliae) with feather disorder and in the cloacal swabs of three asymptomatic Adélie Penguins at Cape Crozier, Antarctica. A total of 75 cloacal swab samples obtained from adults and chicks of three species of penguin (genus: Pygoscelis) from seven Antarctic breeding colonies (South Shetland Islands and Western Antarctic Peninsula) in the 2015-2016 breeding season were screened for PenCV. We identified new variants of PenCV in one Adélie Penguin and one Chinstrap Penguin (Pygoscelis antarcticus) from Port Charcot, Booth Island, Western Antarctic Peninsula, a site home to all three species of Pygoscelid penguins. These two PenCV genomes (length of 1986 nucleotides) share > 99% genome-wide nucleotide identity with each other and share ~87% genome-wide nucleotide identity with the PenCV sequences described from Adélie Penguins at Cape Crozier ~4400 km away in East Antarctica. We did not find any evidence of recombination among PenCV sequences. This is the first report of PenCV in Chinstrap Penguins and the first detection outside of Ross Island, East Antarctica. Given the limited knowledge on Antarctic animal viral diversity, future samples from Antarctic wildlife should be screened for these and other viruses to determine the prevalence and potential impact of viral infections.


Subject(s)
Circovirus/genetics , Circovirus/isolation & purification , Genome, Viral , Spheniscidae/virology , Animals , Antarctic Regions , Bird Diseases/virology , Circovirus/classification , Cloaca/virology , DNA, Viral/genetics , Phylogeny , Spheniscidae/classification
20.
Mol Biol Evol ; 37(6): 1708-1726, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32096861

ABSTRACT

Over evolutionary time, pathogen challenge shapes the immune phenotype of the host to better respond to an incipient threat. The extent and direction of this selection pressure depend on the local pathogen composition, which is in turn determined by biotic and abiotic features of the environment. However, little is known about adaptation to local pathogen threats in wild animals. The Gentoo penguin (Pygoscelis papua) is a species complex that lends itself to the study of immune adaptation because of its circumpolar distribution over a large latitudinal range, with little or no admixture between different clades. In this study, we examine the diversity in a key family of innate immune genes-the Toll-like receptors (TLRs)-across the range of the Gentoo penguin. The three TLRs that we investigated present varying levels of diversity, with TLR4 and TLR5 greatly exceeding the diversity of TLR7. We present evidence of positive selection in TLR4 and TLR5, which points to pathogen-driven adaptation to the local pathogen milieu. Finally, we demonstrate that two positively selected cosegregating sites in TLR5 are sufficient to alter the responsiveness of the receptor to its bacterial ligand, flagellin. Taken together, these results suggest that Gentoo penguins have experienced distinct pathogen-driven selection pressures in different environments, which may be important given the role of the Gentoo penguin as a sentinel species in some of the world's most rapidly changing environments.


Subject(s)
Selection, Genetic , Spheniscidae/genetics , Toll-Like Receptors/genetics , Animals , Flagellin/immunology , Genetic Variation , Phylogeography , Spheniscidae/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...