Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 627: 860-868, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29426211

ABSTRACT

A common method for treating the aqueous phase (produced water) brought to the surface along with oil and natural gas is to discharge it into surface impoundments, also known as produced water ponds. Here we analyze data on the concentration of organic compounds in the water and on the flux of the same compounds into the atmosphere. Flux data extending from about 5 × 10-2 to 10+3 mg m-2 h-1 are consistent with mass-transfer laws given by the WATER9 semi-empirical algorithm, although empirical data display a noise level of about one order of magnitude and predictions by WATER9 are biased high. The data suggest partitioning between hydrocarbons in aqueous solution and in suspension, especially at higher overall concentrations. Salinity of the produced water does not have a detectable effect on hydrocarbon fluxes. Recently impounded waters are stronger emitters of hydrocarbons, while emissions of older waters are dominated by CO2. This aging effect can be explained by assuming, first, poor vertical mixing in the ponds, and second, gradual oxidation of hydrocarbons to CO2. Our measurements account for about 25% of the produced water ponds in the Uinta Basin, Eastern Utah, and when extrapolated to all ponds in the basin, account for about 4% to 14% of all organic compound emissions by the oil and natural gas sector of the basin, depending on the emissions inventory, and about 13% and 58%, respectively, of emissions of aromatics and alcohols.

2.
J Air Waste Manag Assoc ; 68(7): 713-724, 2018 07.
Article in English | MEDLINE | ID: mdl-29341852

ABSTRACT

In this study, the authors apply two different dispersion models to evaluate flux chamber measurements of emissions of 58 organic compounds, including C2-C11 hydrocarbons and methanol, ethanol, and isopropanol from oil- and gas-produced water ponds in the Uintah Basin. Field measurement campaigns using the flux chamber technique were performed at a limited number of produced water ponds in the basin throughout 2013-2016. Inverse-modeling results showed significantly higher emissions than were measured by the flux chamber. Discrepancies between the two methods vary across hydrocarbon compounds and are largest in alcohols due to their physical chemistries. This finding, in combination with findings in a related study using the WATER9 wastewater emission model, suggests that the flux chamber technique may underestimate organic compound emissions, especially alcohols, due to its limited coverage of the pond area and alteration of environmental conditions, especially wind speed. Comparisons of inverse-model estimations with flux chamber measurements varied significantly with the complexity of pond facilities and geometries. Both model results and flux chamber measurements suggest significant contributions from produced water ponds to total organic compound emission from oil and gas productions in the basin. IMPLICATIONS: This research is a component of an extensive study that showed significant amount of hydrocarbon emissions from produced water ponds in the Uintah Basin, Utah. Such findings have important meanings to air quality management agencies in developing control strategies for air pollution in oil and gas fields, especially for the Uintah Basin in which ozone pollutions frequently occurred in winter seasons.


Subject(s)
Air Pollutants/analysis , Models, Theoretical , Volatile Organic Compounds/analysis , Wastewater/chemistry , Air Pollution/analysis , Environmental Monitoring/methods , Hydrocarbons/analysis , Hydrocarbons/chemistry , Oil and Gas Fields/chemistry , Ozone/analysis , Ponds/chemistry , Seasons , Utah , Volatile Organic Compounds/chemistry , Wastewater/analysis , Water/chemistry
3.
Sci Total Environ ; 618: 998-1007, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29102201

ABSTRACT

Determining whether changes in groundwater methane concentration are naturally occurring or related to oil and gas operations can be complicated by numerous sources of variability. This study of 10 residential water supply wells in Northeastern Pennsylvania evaluates how i) sampling from different points within the water well system, ii) purging different water volumes prior to sampling, and ii) natural variation over time, affects concentrations of naturally occurring dissolved methane and other water quality parameters. Among the population of wells, all had dissolved methane concentrations >1mg/L. Regardless of the volume of water purged or the timing between events, the maximum change in methane concentration (ratio of maximum to minimum concentration) among samples from a single well was 3.2, with eight out of ten wells exhibiting a maximum change less than a factor of two (i.e., <±100%). Among water wells where methane concentration changed by ±50% or more, there was a strong correlation with changes in the concentrations of sodium, chloride, and other salinity indicators such as specific conductivity and TDS. This suggests that significant variability in methane concentration is predominantly related to changes in the relative volumes of sodium-rich fluids feeding the wellbore at any given time. Among study well locations with bladder and diaphragm pressure tanks, there was no significant difference in dissolved methane concentrations between samples collected either upstream or downstream of a pressure tank. There appears to be little benefit to purging multiple casing volumes of water from a well prior to sampling because such volumes tend to be much larger than those representative of normal residential use. We recommend purging a volume sufficient to remove standing water in the pressure tank and lines above the pump intake. This article culminates with additional recommendations for improving sample collection methods and interpreting sampling data.

4.
Ground Water ; 56(3): 413-424, 2018 05.
Article in English | MEDLINE | ID: mdl-28853149

ABSTRACT

The expanding use of horizontal drilling and hydraulic fracturing technology to produce oil and gas from tight rock formations has increased public concern about potential impacts on the environment, especially on shallow drinking water aquifers. In eastern Kentucky, horizontal drilling and hydraulic fracturing have been used to develop the Berea Sandstone and the Rogersville Shale. To assess baseline groundwater chemistry and evaluate methane detected in groundwater overlying the Berea and Rogersville plays, we sampled 51 water wells and analyzed the samples for concentrations of major cations and anions, metals, dissolved methane, and other light hydrocarbon gases. In addition, the stable carbon and hydrogen isotopic composition of methane (δ13 C-CH4 and δ2 H-CH4 ) was analyzed for samples with methane concentration exceeding 1 mg/L. Our study indicates that methane is a relatively common constituent in shallow groundwater in eastern Kentucky, where methane was detected in 78% of the sampled wells (40 of 51 wells) with 51% of wells (26 of 51 wells) exhibiting methane concentrations above 1 mg/L. The δ13 C-CH4 and δ2 H-CH4 ranged from -84.0‰ to -58.3‰ and from -246.5‰ to -146.0‰, respectively. Isotopic analysis indicated that dissolved methane was primarily microbial in origin formed through CO2 reduction pathway. Results from this study provide a first assessment of methane in the shallow aquifers in the Berea and Rogersville play areas and can be used as a reference to evaluate potential impacts of future horizontal drilling and hydraulic fracturing activities on groundwater quality in the region.


Subject(s)
Groundwater/chemistry , Methane/analysis , Environmental Monitoring , Kentucky , Natural Gas , Oil and Gas Fields , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL