Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Emerg Infect Dis ; 30(4): 701-710, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526070

ABSTRACT

Salmonella enterica serovar Infantis presents an ever-increasing threat to public health because of its spread throughout many countries and association with high levels of antimicrobial resistance (AMR). We analyzed whole-genome sequences of 5,284 Salmonella Infantis strains from 74 countries, isolated during 1989-2020 from a wide variety of human, animal, and food sources, to compare genetic phylogeny, AMR determinants, and plasmid presence. The global Salmonella Infantis population structure diverged into 3 clusters: a North American cluster, a European cluster, and a global cluster. The levels of AMR varied by Salmonella Infantis cluster and by isolation source; 73% of poultry isolates were multidrug resistant, compared with 35% of human isolates. This finding correlated with the presence of the pESI megaplasmid; 71% of poultry isolates contained pESI, compared with 32% of human isolates. This study provides key information for public health teams engaged in reducing the spread of this pathogen.


Subject(s)
One Health , Salmonella enterica , Animals , Humans , Serogroup , Anti-Bacterial Agents/pharmacology , Salmonella/genetics , Poultry , Drug Resistance, Multiple, Bacterial/genetics
2.
Nat Commun ; 14(1): 7715, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001075

ABSTRACT

Shigellosis, a leading cause of diarrhoeal mortality and morbidity globally, predominantly affects children under five years of age living in low- and middle-income countries. While whole genome sequence analysis (WGSA) has been effectively used to further our understanding of shigellosis epidemiology, antimicrobial resistance, and transmission, it has been under-utilised in sub-Saharan Africa. In this study, we applied WGSA to large sub-sample of surveillance isolates from South Africa, collected from 2011 to 2015, focussing on Shigella flexneri 2a and Shigella sonnei. We find each serotype is epidemiologically distinct. The four identified S. flexneri 2a clusters having distinct geographical distributions, and antimicrobial resistance (AMR) and virulence profiles, while the four sub-Clades of S. sonnei varied in virulence plasmid retention. Our results support serotype specific lifestyles as a driver for epidemiological differences, show AMR is not required for epidemiological success in S. flexneri, and that the HIV epidemic may have promoted Shigella population expansion.


Subject(s)
Anti-Infective Agents , Dysentery, Bacillary , Shigella , Child , Humans , Child, Preschool , Dysentery, Bacillary/epidemiology , South Africa/epidemiology , Shigella/genetics , Shigella flexneri/genetics , Genomics
3.
BMC Infect Dis ; 23(1): 791, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957562

ABSTRACT

BACKGROUND: We describe the genotypic characteristics and antimicrobial resistance (AMR) determinants of Salmonella enterica serovar Isangi (Salmonella Isangi) clinical isolates in South Africa from 2020 through 2021. METHODS: During the years 2020 to 2021, the Centre for Enteric Diseases of the National Institute for Communicable Diseases, a national reference centre in South Africa for human infections resulting from enteric bacterial pathogens, investigated a total of 3549 clinical isolates of Salmonella species. Whole genome sequencing (WGS) was performed using Illumina NextSeq Technology. WGS data was analyzed using Centre for Genomic Epidemiology-based tools and EnteroBase web-based platform. Genotypic relatedness and cluster analysis was investigated based on core-genome multilocus sequence typing. RESULTS: Forty-nine isolates were confirmed to be Salmonella Isangi, with most submitted from Gauteng Province (24/49, 49%). The most prevalent sequence type was ST335 (48/49, 98%), and the remaining 1 isolate was ST216. All ST335 isolates were genotypically multidrug-resistant (MDR), with resistance to fluoroquinolones, chloramphenicol, trimethoprim-sulfamethoxazole and tetracycline; the ST216 isolate was resistant only to aminoglycosides. All ST335 isolates carried ESBL genes, the most common being blaCTX-M-15. Five clusters (consisting of isolates related within five allele differences) were detected, all being ST335. CONCLUSIONS: Most Salmonella Isangi isolates in South Africa are MDR and ESBL-positive. Ongoing monitoring of the epidemiology and AMR profile of this serovar is important for public health and treatment guidelines.


Subject(s)
Salmonella enterica , Humans , Serogroup , South Africa/epidemiology , Salmonella , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests
4.
Open Forum Infect Dis ; 10(Suppl 1): S38-S46, 2023 May.
Article in English | MEDLINE | ID: mdl-37274533

ABSTRACT

The global response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic demonstrated the value of timely and open sharing of genomic data with standardized metadata to facilitate monitoring of the emergence and spread of new variants. Here, we make the case for the value of Salmonella Typhi (S. Typhi) genomic data and demonstrate the utility of freely available platforms and services that support the generation, analysis, and visualization of S. Typhi genomic data on the African continent and more broadly by introducing the Africa Centres for Disease Control and Prevention's Pathogen Genomics Initiative, SEQAFRICA, Typhi Pathogenwatch, TyphiNET, and the Global Typhoid Genomics Consortium.

5.
Emerg Infect Dis ; 29(8): 1687-1690, 2023 08.
Article in English | MEDLINE | ID: mdl-37352549

ABSTRACT

Since February 2022, Malawi has experienced a cholera outbreak of >54,000 cases. We investigated 6 cases in South Africa and found that isolates linked to the outbreak were Vibrio cholerae O1 serotype Ogawa from seventh pandemic El Tor sublineage AFR15, indicating a new introduction of cholera into Africa from south Asia.


Subject(s)
Cholera , Vibrio cholerae O1 , Humans , Cholera/epidemiology , South Africa/epidemiology , Vibrio cholerae O1/genetics , Asia, Southern , Malawi , Disease Outbreaks
6.
Access Microbiol ; 4(7): acmi000371, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36003217

ABSTRACT

Salmonella Infantis is presenting an increasing risk to public health. Of particular concern are the reports of pESI, a multidrug resistance (MDR) encoding megaplasmid, in isolates from multiple countries, but little is known about its presence or diversity in South Africa. Whole genome sequences of 387 S. Infantis isolates from South Africa (2004-2020) were analysed for genetic phylogeny, recombination frequency, antimicrobial resistance (AMR) determinants, plasmid presence and overall gene content. The population structure of South African S. Infantis was substantially different to S. Infantis reported elsewhere; only two thirds of isolates belonged to eBG31, while the remainder were identified as eBG297, a much rarer group globally. Significantly higher levels of recombination were observed in the eBG297 isolates, which was associated with the presence of prophages. The majority of isolates were putatively susceptible to antimicrobials (335/387) and lacked any plasmids (311/387); the megaplasmid pESI was present in just one isolate. A larger proportion of eBG31 isolates, 19% (49/263), contained at least one AMR determinant, compared to eBG297 at 2% (3/124). Comparison of the pan-genomes of isolates from either eBG identified 943 genes significantly associated with eBG, with 43 found exclusively in eBG31 isolates and 34 in eBG297 isolates. This, along with the single nucleotide polymorphism distance and difference in resistance profiles, suggests that eBG31 and eBG297 isolates occupy different niches within South Africa. If antibiotic-resistant S. Infantis emerges in South Africa, probably through the spread of the pESI plasmid, treatment of this infection would be compromised.

7.
Prev Vet Med ; 205: 105681, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35691135

ABSTRACT

In South Africa, there is a shortage of epidemiologic data on Shiga toxin-producing Escherichia coli (STEC) in the beef production chain. This study was conducted to characterise STEC isolates originating from three studies conducted in a cattle feedlot, beef abattoirs and retail outlets in Gauteng province, South Africa. Polymerase chain reaction was used to detect virulence genes, the Epsilometer test to assess antimicrobial susceptibility, pulsed-field gel electrophoresis (PFGE) to investigate genetic relatedness of isolates, and conventional serotyping for phenotypic identification. Amongst the 86 STEC isolates, the eaeA gene was detected in 20 (23%), and 26 different serogroups were identified, including the clinically important O8, O174, O2, 020 and O117. The majority of the isolates (95%; 82/86) exhibited resistance to one or more antimicrobial agents, and 30 of the isolates (35%) exhibited multi-drug resistance (MDR), being resistant to at least three antimicrobial classes. The PFGE patterns showed a highly diverse but related STEC population, with 45 distinct patterns and evidence of horizontal transmission along the beef production chain. This is significant because it demonstrates continual environmental contamination and risk of contamination along the beef production chain and the food chain. To our knowledge, this is the first study that provides evidence of horizontal transmission of STEC along the beef production chain in South Africa. This epidemiological information could facilitate the development of a proactive strategy for reducing potential foodborne outbreaks and transmission of antimicrobial resistant pathogens in the food chain.


Subject(s)
Cattle Diseases , Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Abattoirs , Animals , Cattle , Cattle Diseases/epidemiology , Electrophoresis, Gel, Pulsed-Field/veterinary , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Serotyping/veterinary , Shiga-Toxigenic Escherichia coli/genetics , South Africa/epidemiology
8.
Foodborne Pathog Dis ; 19(5): 332-340, 2022 05.
Article in English | MEDLINE | ID: mdl-35325576

ABSTRACT

PulseNet International (PNI) is a global network of 88 countries who work together through their regional and national public health laboratories to track foodborne disease around the world. The vision of PNI is to implement globally standardized surveillance using whole genome sequencing (WGS) for real-time identification and subtyping of foodborne pathogens to strengthen preparedness and response and lower the burden of disease. Several countries in North America and Europe have experienced significant benefits in disease mitigation after implementing WGS. To broaden the routine use of WGS around the world, challenges and barriers must be overcome. We conducted this study to determine the challenges and barriers countries are encountering in their attempts to implement WGS and to identify how PNI can provide support to improve and become a better integrated system overall. A survey was designed with a set of qualitative questions to capture the status, challenges, barriers, and successes of countries in the implementation of WGS and was administered to laboratories in Africa, Asia-Pacific, Latin America and the Caribbean, and Middle East. One-third of respondents do not use WGS, and only 8% reported using WGS for routine, real-time surveillance. The main barriers for implementation of WGS were lack of funding, gaps in expertise, and training, especially for data analysis and interpretation. Features of an ideal system to facilitate implementation and global surveillance were identified as an all-in-one software that is free, accessible, standardized and validated. This survey highlights the minimal use of WGS for foodborne disease surveillance outside the United States, Canada, and Europe to date. Although funding remains a major barrier to WGS-based surveillance, critical gaps in expertise and availability of tools must be overcome. Opportunities to seek sustainable funding, provide training, and identify solutions for a globally standardized surveillance platform will accelerate implementation of WGS worldwide.


Subject(s)
Developing Countries , Foodborne Diseases , Disease Outbreaks , Foodborne Diseases/epidemiology , Genome, Bacterial , Humans , Surveys and Questionnaires , United States/epidemiology , Whole Genome Sequencing
9.
Emerg Infect Dis ; 27(11): 2927-2931, 2021 11.
Article in English | MEDLINE | ID: mdl-34670657

ABSTRACT

We describe the molecular epidemiology of cholera in South Africa during 2018-2020. Vibrio cholerae O1 sequence type (ST) 75 recently emerged and became more prevalent than the V. cholerae O1 biotype El Tor pandemic clone. ST75 isolates were found across large spatial and temporal distances, suggesting local ST75 spread.


Subject(s)
Cholera , Vibrio cholerae O1 , Cholera/epidemiology , Disease Outbreaks , Humans , Molecular Epidemiology , South Africa/epidemiology , Vibrio cholerae O1/genetics
10.
J Med Microbiol ; 69(11): 1303-1307, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33048044

ABSTRACT

Salmonella enterica serotype Enteritidis (Salmonella Enteritidis) is a major cause of foodborne disease outbreaks worldwide. In 2018, two concurrent outbreaks of Salmonella Enteritidis gastroenteritis in one district of South Africa were investigated. We describe the use of whole-genome sequencing (WGS) analysis of bacterial isolates to assist with the investigation of these outbreaks. Outbreak A affected children (n=27) attending a day-care centre, while outbreak B affected adults (n=16) who ate breakfast at the same restaurant. Salmonella Enteritidis was isolated from stool samples in both outbreaks (four children in outbreak A; 12 restaurant customers and three restaurant food-handlers in outbreak B). In outbreak B, Salmonella Enteritidis was isolated from three food retention samples (raw chicken egg, hollandaise sauce and rocket-herb). Available isolates from both outbreaks (n=13) were investigated using WGS analysis. Sequencing data for isolates were analysed at the EnteroBase web-based platform and included core-genome multi-locus sequence typing (cgMLST). Isolates with epidemiological links to the restaurant (n=10) and day-care centre (n=3), were shown by cgMLST to be highly genetically related, with no more than five allele differences when comparing one isolate against another. On food history, eggs and hollandaise sauce were the common food items consumed by ill restaurant customers. Unfortunately, Salmonella Enteritidis isolated from the egg and hollandaise sauce were not available for WGS analysis. Our investigation concluded that the two concurrent outbreaks were caused by a highly related strain of Salmonella Enteritidis, suggesting the possibility of a common contaminated food source, of which contaminated eggs are strongly implicated.


Subject(s)
Disease Outbreaks , Foodborne Diseases/epidemiology , Genome, Bacterial , Salmonella Infections/epidemiology , Salmonella enteritidis/genetics , Whole Genome Sequencing , Adult , Child Day Care Centers , Child, Preschool , Feces/microbiology , Foodborne Diseases/microbiology , Gastroenteritis/epidemiology , Gastroenteritis/microbiology , Humans , Infant , Infant, Newborn , Middle Aged , Raw Foods/microbiology , Salmonella Infections/microbiology , South Africa/epidemiology
12.
N Engl J Med ; 382(7): 632-643, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32053299

ABSTRACT

BACKGROUND: An outbreak of listeriosis was identified in South Africa in 2017. The source was unknown. METHODS: We conducted epidemiologic, trace-back, and environmental investigations and used whole-genome sequencing to type Listeria monocytogenes isolates. A case was defined as laboratory-confirmed L. monocytogenes infection during the period from June 11, 2017, to April 7, 2018. RESULTS: A total of 937 cases were identified, of which 465 (50%) were associated with pregnancy; 406 of the pregnancy-associated cases (87%) occurred in neonates. Of the 937 cases, 229 (24%) occurred in patients 15 to 49 years of age (excluding those who were pregnant). Among the patients in whom human immunodeficiency virus (HIV) status was known, 38% of those with pregnancy-associated cases (77 of 204) and 46% of the remaining patients (97 of 211) were infected with HIV. Among 728 patients with a known outcome, 193 (27%) died. Clinical isolates from 609 patients were sequenced, and 567 (93%) were identified as sequence type 6 (ST6). In a case-control analysis, patients with ST6 infections were more likely to have eaten polony (a ready-to-eat processed meat) than those with non-ST6 infections (odds ratio, 8.55; 95% confidence interval, 1.66 to 43.35). Polony and environmental samples also yielded ST6 isolates, which, together with the isolates from the patients, belonged to the same core-genome multilocus sequence typing cluster with no more than 4 allelic differences; these findings showed that polony produced at a single facility was the outbreak source. A recall of ready-to-eat processed meat products from this facility was associated with a rapid decline in the incidence of L. monocytogenes ST6 infections. CONCLUSIONS: This investigation showed that in a middle-income country with a high prevalence of HIV infection, L. monocytogenes caused disproportionate illness among pregnant girls and women and HIV-infected persons. Whole-genome sequencing facilitated the detection of the outbreak and guided the trace-back investigations that led to the identification of the source.


Subject(s)
Disease Outbreaks , Foodborne Diseases/epidemiology , Listeria monocytogenes/isolation & purification , Listeriosis/epidemiology , Meat Products/microbiology , Adolescent , Adult , Aged , Bacterial Typing Techniques , Case-Control Studies , Female , Foodborne Diseases/etiology , Foodborne Diseases/mortality , HIV Infections/complications , HIV-1 , Humans , Infant, Newborn , Listeria monocytogenes/genetics , Listeriosis/etiology , Listeriosis/mortality , Male , Meat Products/adverse effects , Middle Aged , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Product Recalls and Withdrawals , Sex Distribution , South Africa/epidemiology , Whole Genome Sequencing , Young Adult
13.
S Afr J Infect Dis ; 35(1): 107, 2020.
Article in English | MEDLINE | ID: mdl-34485467

ABSTRACT

BACKGROUND: Typhoid fever remains a public health concern in South Africa, where the risk of transmission is high because of poor access to safe water and sanitation. This study describes the investigation of typhoid fever outbreak in Limpopo province. METHODOLOGY: Following notification of laboratory-confirmed cases, a descriptive study was conducted at Sekhukhune District, Limpopo province. A suspected case was defined as any person residing in Makhuduthamaga Municipality from November 2017 to January 2018, presenting with fever and gastrointestinal symptoms. Data were collected using case investigation forms. Whole-genome sequencing (WGS) was carried out on Salmonella Typhi isolates and polymerase chain reaction (PCR) test was done for Salmonella species from water samples. Location of cases and water sources were mapped using ArcGIS mapping tool. RESULTS: Amongst 122 cases, 54% (n = 66) were female and 6% (n = 7) laboratory-confirmed. The median age of the cases was 11 years (range 2-83 years), with 79% (n = 102) being children under the age of 14 years. Salmonella species were detected in 37% (10/27) of water samples and geographic information system (GIS) mapping showed clustering of cases in Tswaing-Kgwaripe and Vlakplaas villages. Six isolates were available for WGS analysis, with resulting data showing that five of the six isolates were genetically related. Phylogenetic analysis showed that the five isolates clustered together were genetically related showing < 22 single nucleotide polymorphisms when compared to each other. CONCLUSION: Molecular epidemiology of isolates suggests a common source outbreak, supported by the detection of Salmonella species from water sources. Consumption of water from contaminated open water sources, because of ongoing interruption of municipal water supply, was the likely cause of the outbreak. The investigation highlights the importance of consistent safe water supply and the ability of district surveillance systems to identify and contain outbreaks.

14.
BMC Microbiol ; 19(1): 244, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31694551

ABSTRACT

BACKGROUND: In light of rampant childhood diarrhoea, this study investigated bacterial pathogens from human and non-human sources in an urban informal settlement. Meat from informal abattoirs (n = 85), river water (n = 64), and diarrheic stool (n = 66) were collected between September 2015 and May 2016. A duplex real-time PCR, gel-based PCR, and CHROMagar™STEC were used to screen Tryptic Soy Broth (TSB) for diarrheic E. coli. Standard methods were used to screen for other selected food and waterborne bacterial pathogens. RESULTS: Pathogens isolated from stool, meat, and surface water included Salmonella enterica (6, 5, 0%), Plesiomonas shigelloides (9, 0, 17%), Aeromonas sobria (3, 3, 0%), Campylobacter jejuni (5, 5, 0%), Shigella flexneri (17, 5, 0%), Vibrio vulnificus (0, 0, 9%), and diarrheic E. coli (21, 3, 7%) respectively. All the isolates were resistant to trimethoprim-sulphamethoxazole. CONCLUSIONS: There was a high burden of drug resistant diarrheal pathogens in the stool, surface water and meat from informal slaughter. Integrated control measures are needed to ensure food safety and to prevent the spread of drug resistant pathogens in similar settings.


Subject(s)
Bacteria/classification , Bacterial Infections/epidemiology , Diarrhea/microbiology , Feces/microbiology , Meat/microbiology , Rivers/microbiology , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Infections/drug therapy , Child, Preschool , Diarrhea/drug therapy , Diarrhea/epidemiology , Drug Resistance, Multiple, Bacterial , Female , Food Microbiology , Humans , Infant , Male , Population Surveillance , Prevalence , South Africa/epidemiology , Urban Renewal
15.
Toxins (Basel) ; 11(7)2019 07 19.
Article in English | MEDLINE | ID: mdl-31331115

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) isolates (N = 38) that were incriminated in human disease from 2006 to 2013 in South Africa were characterized by serotype, virulence-associated genes, antimicrobial resistance and pulsed-field gel electrophoresis (PFGE). The isolates belonged to 11 O:H serotypes. STEC O26:H11 (24%) was the most frequent serotype associated with human disease, followed by O111:H8 (16%), O157:H7 (13%) and O117:H7 (13%). The majority of isolates were positive for key virulence-associated genes including stx1 (84%), eaeA (61%), ehxA (68.4%) and espP (55%), but lacked stx2 (29%), katP (42%), etpD (16%), saa (16%) and subA (3%). stx2 positive isolates carried stx2c (26%) and/or stx2d (26%) subtypes. All pathogenicity island encoded virulence marker genes were detected in all (100%) isolates except nleA (47%), nleC (84%) and nleD (76%). Multidrug resistance was observed in 89% of isolates. PFGE revealed 34 profiles with eight distinct clusters that shared ≥80% intra-serotype similarity, regardless of the year of isolation. In conclusion, STEC isolates that were implicated in human disease between 2006 and 2013 in South Africa were mainly non-O157 strains which possessed virulence genes and markers commonly associated with STEC strains that have been incriminated in mild to severe human disease worldwide. Improved STEC monitoring and surveillance programs are needed in South Africa to control and prevent STEC disease in humans.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Shiga-Toxigenic Escherichia coli , Escherichia coli Infections/epidemiology , Humans , Serogroup , Shiga-Toxigenic Escherichia coli/drug effects , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/pathogenicity , South Africa/epidemiology , Virulence/genetics
16.
Afr J Lab Med ; 8(1): 760, 2019.
Article in English | MEDLINE | ID: mdl-31205868

ABSTRACT

BACKGROUND: In sub-Saharan Africa, molecular epidemiological investigation of outbreaks caused by antimicrobial-resistant enteric bacterial pathogens have mostly been described for Salmonella species, Vibrio cholerae, Shigella species and Escherichia coli. For these organisms, I reviewed all publications describing the use of molecular subtyping methodologies to investigate outbreaks caused by multidrug-resistant (MDR) enteric bacterial infections. OBJECTIVES: To describe the use of molecular subtyping methodologies to investigate outbreaks caused by MDR enteric bacterial pathogens in sub-Saharan Africa and to describe the current status of molecular subtyping capabilities in the region. METHODS: A PubMed database literature search (English language only) was performed using the search strings: 'Africa outbreak MDR', 'Africa outbreak multi', 'Africa outbreak multidrug', 'Africa outbreak multi drug', 'Africa outbreak resistance', 'Africa outbreak resistant', 'Africa outbreak drug', 'Africa outbreak antibiotic', 'Africa outbreak antimicrobial'. These search strings were used in combination with genus and species names of the organisms listed above. All results were included in the review. RESULTS: The year 1991 saw one of the first reports describing the use of molecular subtyping methodologies in sub-Saharan Africa; this included the use of plasmid profiling to characterise Salmonella Enteritidis. To date, several methodologies have been used; pulsed-field gel electrophoresis analysis and multilocus sequence typing have been the most commonly used methodologies. Investigations have particularly highlighted the emergence and spread of MDR clones; these include Salmonella Typhi H58 and Salmonella Typhimurium ST313 clones. In recent times, whole-genome sequencing (WGS) analysis approaches have increasingly been used. CONCLUSION: Traditional molecular subtyping methodologies are still commonly used and still have their place in investigations; however, WGS approaches have increasingly been used and are slowly gaining a stronghold. African laboratories need to start adapting their molecular surveillance methodologies to include WGS, as it is foreseen that WGS analysis will eventually replace all traditional methodologies.

17.
BMC Infect Dis ; 19(1): 487, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31151421

ABSTRACT

BACKGROUND: Typhoid fever remains a major public health problem in Zimbabwe with recurrent outbreaks reported since 2009. To provide guidance on appropriate treatment choice in order to minimise the morbidity and mortality of typhoid fever and prevent large scale outbreaks, we investigated the antimicrobial susceptibility patterns, prevalence of Salmonella enterica serotype Typhi (S. Typhi) H58 haplotype and molecular subtypes of S. Typhi from outbreak strains isolated from 2009 to 2017 in Zimbabwe and compared these to isolates from neighbouring African countries. METHODS: Antimicrobial susceptibility testing was performed on all isolates using the disk diffusion, and E-Test, and results were interpreted using Clinical and Laboratory Standards Institute (CLSI) guidelines (2017). S. Typhi H58 haplotype screening was performed on 161 (58.3%) isolates. Pulsed-field gel electrophoresis (PFGE) was performed on 91 selected isolates across timelines using antibiotic susceptibility results and geographical distribution (2009 to 2016). RESULTS: Between 2009 and 2017, 16,398 suspected cases and 550 confirmed cases of typhoid fever were notified in Zimbabwe. A total of 276 (44.6%) of the culture-confirmed S. Typhi isolates were analysed and 243 isolates (88.0%) were resistant to two or more first line drugs (ciprofloxacin, ampicillin and chloramphenicol) for typhoid. The most common resistance was to ampicillin-chloramphenicol (172 isolates; 62.3%). Increasing ciprofloxacin resistance was observed from 2012 to 2017 (4.2 to 22.0%). Out of 161 screened isolates, 150 (93.2%) were haplotype H58. Twelve PFGE patterns were observed among the 91 isolates analysed, suggesting some diversity exists among strains circulating in Zimbabwe. PFGE analysis of 2013, 2014 and 2016 isolates revealed a common strain with an indistinguishable PFGE pattern (100% similarity) and indistinguishable from PFGE patterns previously identified in strains isolated from South Africa, Zambia and Tanzania. CONCLUSIONS: Resistance to first line antimicrobials used for typhoid fever is emerging in Zimbabwe and the multidrug resistant S. Typhi H58 haplotype is widespread. A predominant PFGE clone circulating in Zimbabwe, South Africa, Zambia and Tanzania, argues for cross-border cooperation in the control of this disease.


Subject(s)
Salmonella typhi/genetics , Salmonella typhi/isolation & purification , Typhoid Fever/epidemiology , Typhoid Fever/microbiology , Ampicillin/therapeutic use , Anti-Bacterial Agents/therapeutic use , Chloramphenicol/therapeutic use , Ciprofloxacin/therapeutic use , Clinical Laboratory Techniques/statistics & numerical data , Disease Outbreaks , Drug Resistance, Microbial/genetics , Electrophoresis, Gel, Pulsed-Field , Female , Haplotypes , Humans , Laboratories/statistics & numerical data , Microbial Sensitivity Tests , Molecular Epidemiology , Salmonella enterica/classification , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella typhi/classification , Serogroup , Typhoid Fever/diagnosis , Typhoid Fever/drug therapy , Zimbabwe/epidemiology
18.
Foodborne Pathog Dis ; 16(7): 524-530, 2019 07.
Article in English | MEDLINE | ID: mdl-31062992

ABSTRACT

In South Africa, a progressive increase in listeriosis cases was noted from mid-June 2017, heralding what was to become the world's largest listeriosis outbreak. A total of 1060 cases were reported for the period January 1, 2017 to July 17, 2018. We describe laboratory activities, experiences, and results of whole-genome sequencing (WGS) analysis of Listeria monocytogenes isolates associated with this outbreak. Bacteria were identified using the VITEK-2 COMPACT 15 microbial identification system. WGS was performed using Illumina MiSeq technology. WGS data were analyzed using CLC Genomics Workbench Software and free-to-use on-line analysis tools/pipelines. Multilocus sequence typing (MLST) showed that 91% of clinical isolates were sequence type 6 (ST6), determining that the outbreak was largely associated with L. monocytogenes ST6. Epidemiological and laboratory findings led to investigation of a large ready-to-eat processed meat production facility in South Africa, named Enterprise Foods. L. monocytogenes ST6 was found in environmental sampling swabs of the production facility and in ready-to-eat processed meat products (including polony, a product similar to bologna sausage) manufactured at the facility. ST6 isolates, sourced at the Enterprise Foods production facility and from Enterprise food products, were shown by single nucleotide polymorphism (SNP) analysis to be highly related to clinical isolates; these nonclinical ST6 isolates showed <10 SNP differences when compared to clinical ST6 isolates. Core-genome MLST showed that clinical ST6 isolates and Enterprise-related ST6 isolates had no more than 4 allele differences between each other, suggestive of a high probability of epidemiological relatedness. WGS data interpreted together with epidemiological data concluded that the source of the listeriosis outbreak was ready-to-eat processed meat products manufactured by Enterprise Foods. Listeriosis has now been added to the South African list of mandatory notifiable medical conditions. Surveillance systems have been strengthened to facilitate prevention and early detection of listeriosis outbreaks.


Subject(s)
Disease Outbreaks , Foodborne Diseases/epidemiology , Listeria monocytogenes/isolation & purification , Listeriosis/epidemiology , Meat Products/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Food Microbiology , Foodborne Diseases/microbiology , Genome, Bacterial/genetics , Humans , Infant , Infant, Newborn , Listeria monocytogenes/genetics , Male , Meat Products/adverse effects , Middle Aged , Multilocus Sequence Typing , South Africa/epidemiology , Whole Genome Sequencing , Young Adult
19.
Access Microbiol ; 1(9): e000061, 2019.
Article in English | MEDLINE | ID: mdl-32974561

ABSTRACT

INTRODUCTION: Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens that may cause diarrhoeal outbreaks and occasionally are associated with haemolytic-uraemic syndrome (HUS). We report on STEC O26:H11 associated with a cluster of four HUS cases in South Africa in 2017. METHODOLOGY: All case-patients were female and aged 5 years and under. Standard microbiological tests were performed for culture and identification of STEC from specimens (human stool and food samples). Further analysis of genomic DNA extracted from bacterial cultures and specimens included PCR for specific virulence genes, whole-genome sequencing and shotgun metagenomic sequencing. RESULTS: For 2/4 cases, stool specimens revealed STEC O26:H11 containing eae, stx2a and stx2b virulence genes. All food samples were found to be negative for STEC. No epidemiological links could be established between the HUS cases. Dried meat products were the leading food item suspected to be the vehicle of transmission for these cases, as 3/4 case-patients reported they had eaten this. However, testing of dried meat products could not confirm this. CONCLUSION: Since STEC infection does not always lead to severe symptoms, it is possible that many more cases were associated with this cluster and largely went unrecognized.

20.
Afr. j. lab. med. (Online) ; 8(1): 1-10, 2019. ilus
Article in English | AIM (Africa) | ID: biblio-1257322

ABSTRACT

Background: In sub-Saharan Africa, molecular epidemiological investigation of outbreaks caused by antimicrobial-resistant enteric bacterial pathogens have mostly been described for Salmonella species, Vibrio cholerae, Shigella species and Escherichia coli. For these organisms, I reviewed all publications describing the use of molecular subtyping methodologies to investigate outbreaks caused by multidrug-resistant (MDR) enteric bacterial infections.Objectives: To describe the use of molecular subtyping methodologies to investigate outbreaks caused by MDR enteric bacterial pathogens in sub-Saharan Africa and to describe the current status of molecular subtyping capabilities in the region. Methods: A PubMed database literature search (English language only) was performed using the search strings: 'Africa outbreak MDR', 'Africa outbreak multi', 'Africa outbreak multidrug', 'Africa outbreak multi drug', 'Africa outbreak resistance', 'Africa outbreak resistant', 'Africa outbreak drug', 'Africa outbreak antibiotic', 'Africa outbreak antimicrobial'. These search strings were used in combination with genus and species names of the organisms listed above. All results were included in the review. Results: The year 1991 saw one of the first reports describing the use of molecular subtyping methodologies in sub-Saharan Africa; this included the use of plasmid profiling to characterise Salmonella Enteritidis. To date, several methodologies have been used; pulsed-field gel electrophoresis analysis and multilocus sequence typing have been the most commonly used methodologies. Investigations have particularly highlighted the emergence and spread of MDR clones; these include Salmonella Typhi H58 and Salmonella Typhimurium ST313 clones. In recent times, whole-genome sequencing (WGS) analysis approaches have increasingly been used. Conclusion: Traditional molecular subtyping methodologies are still commonly used and still have their place in investigations; however, WGS approaches have increasingly been used and are slowly gaining a stronghold. African laboratories need to start adapting their molecular surveillance methodologies to include WGS, as it is foreseen that WGS analysis will eventually replace all traditional methodologies


Subject(s)
Africa South of the Sahara , Bacterial Typing Techniques , Drug Resistance, Multiple, Bacterial , Salmonella Infections/epidemiology , Salmonella Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...