Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 314
Filter
1.
Neurology ; 103(6): e209742, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39173103

ABSTRACT

OBJECTIVES: After acute coronavirus disease-2019 (COVID-19), people often experience fatigue, "brain fog," or other central neurologic symptoms (neuro-post-acute SARS-CoV2, or "Neuro-PASC"). In this observational study we evaluated whether abnormalities noted on initial evaluation persist after at least another year. METHODS: Neuro-PASC research participants who had undergone comprehensive inpatient testing at the NIH Clinical Center returned after at least 1 year for follow-up assessments including symptoms rating scales, MRI, lumbar puncture for tests of the CSF, physiologic recordings during the Valsalva maneuver and head-up tilting (with serial plasma catechols and cardiac Doppler ultrasound during the tilting), blood volume measurement, skin biopsies to examine sympathetic innervation, and blood sampling for neuroendocrine and immunologic measures. RESULTS: 7 patients with Neuro-PASC (6 women, age range 42-63 years) underwent follow-up testing. 71% of initially abnormal test results remained abnormal at follow-up, including the pattern of CSF and serum oligoclonal bands, CSF indices of central catecholamine deficiency, baroreflex-cardiovagal dysfunction, the occurrence of tilt-evoked sudden hypotension, white matter hyperintensities on MRI, and adaptive responses in CSF. DISCUSSION: In Neuro-PASC most of the autonomic and immunologic abnormalities found initially are still present after more than a year.


Subject(s)
Autonomic Nervous System Diseases , COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/complications , COVID-19/immunology , Female , Middle Aged , Male , Adult , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/immunology , SARS-CoV-2 , Follow-Up Studies
3.
Article in English | MEDLINE | ID: mdl-38980581

ABSTRACT

The circulation of tumor cells through the bloodstream is a significant step in tumor metastasis. To better understand the metastatic process, circulating tumor cell (CTC) survival in the circulation must be explored. While immune interactions with CTCs in recent decades have been examined, research has yet to sufficiently explain some CTC behaviors in blood flow. Studies related to CTC mechanical responses in the bloodstream have recently been conducted to further study conditions under which CTCs might die. While experimental methods can assess the mechanical properties and death of CTCs, increasingly sophisticated computational models are being built to simulate the blood flow and CTC mechanical deformation under fluid shear stresses (FSS) in the bloodstream.Several factors contribute to the mechanical deformation and death of CTCs as they circulate. While FSS can damage CTC structure, diverse interactions between CTCs and blood components may either promote or hinder the next metastatic step-extravasation at a remote site. Overall understanding of how these factors influence the deformation and death of CTCs could serve as a basis for future experiments and simulations, enabling researchers to predict CTC death more accurately. Ultimately, these efforts can lead to improved metastasis-specific therapeutics and diagnostics specific in the future.

4.
Sci Transl Med ; 16(753): eadl3758, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924428

ABSTRACT

Vitamin B12 is critical for hematopoiesis and myelination. Deficiency can cause neurologic deficits including loss of coordination and cognitive decline. However, diagnosis relies on measurement of vitamin B12 in the blood, which may not accurately reflect the concentration in the brain. Using programmable phage display, we identified an autoantibody targeting the transcobalamin receptor (CD320) in a patient with progressive tremor, ataxia, and scanning speech. Anti-CD320 impaired cellular uptake of cobalamin (B12) in vitro by depleting its target from the cell surface. Despite a normal serum concentration, B12 was nearly undetectable in her cerebrospinal fluid (CSF). Immunosuppressive treatment and high-dose systemic B12 supplementation were associated with increased B12 in the CSF and clinical improvement. Optofluidic screening enabled isolation of a patient-derived monoclonal antibody that impaired B12 transport across an in vitro model of the blood-brain barrier (BBB). Autoantibodies targeting the same epitope of CD320 were identified in seven other patients with neurologic deficits of unknown etiology, 6% of healthy controls, and 21.4% of a cohort of patients with neuropsychiatric lupus. In 132 paired serum and CSF samples, detection of anti-CD320 in the blood predicted B12 deficiency in the brain. However, these individuals did not display any hematologic signs of B12 deficiency despite systemic CD320 impairment. Using a genome-wide CRISPR screen, we found that the low-density lipoprotein receptor serves as an alternative B12 uptake pathway in hematopoietic cells. These findings dissect the tissue specificity of B12 transport and elucidate an autoimmune neurologic condition that may be amenable to immunomodulatory treatment and nutritional supplementation.


Subject(s)
Autoantibodies , Vitamin B 12 Deficiency , Vitamin B 12 , Humans , Vitamin B 12 Deficiency/immunology , Vitamin B 12/blood , Autoantibodies/blood , Autoantibodies/immunology , Female , Receptors, Cell Surface/metabolism , Antigens, CD/metabolism , Middle Aged , Autoimmune Diseases/immunology , Autoimmune Diseases/blood , Blood-Brain Barrier/metabolism , Male
5.
Article in English | MEDLINE | ID: mdl-38741699

ABSTRACT

The stiffness of the extracellular matrix induces differential tension within integrin-based adhesions, triggering differential mechanoresponses. However, it has been unclear if the stiffness-dependent differential tension is induced solely by myosin activity. Here, we report that in the absence of myosin contractility, 3T3 fibroblasts still transmit stiffness-dependent differential levels of traction. This myosin-independent differential traction is regulated by polymerizing actin assisted by actin nucleators Arp2/3 and formin where formin has a stronger contribution than Arp2/3 to both traction and actin flow. Intriguingly, despite only slight changes in F-actin flow speed observed in cells with the combined inhibition of Arp2/3 and myosin compared to cells with sole myosin inhibition, they show a 4-times reduction in traction than cells with myosin-only inhibition. Our analyses indicate that traditional models based on rigid F-actin are inadequate for capturing such dramatic force reduction with similar actin flow. Instead, incorporating the F-actin network's viscoelastic properties is crucial. Our new model including the F-actin viscoelasticity reveals that Arp2/3 and formin enhance stiffness sensitivity by mechanically reinforcing the F-actin network, thereby facilitating more effective transmission of flow-induced forces. This model is validated by cell stiffness measurement with atomic force microscopy and experimental observation of model-predicted stiffness-dependent actin flow fluctuation.

6.
Nat Commun ; 15(1): 4391, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782925

ABSTRACT

Human immunodeficiency virus type-1 (HIV-1) is responsible for significant mortality and morbidity worldwide. Despite complete control of viral replication with antiretrovirals, cells with integrated HIV-1 provirus can produce viral transcripts. In a cross-sectional study of 84 HIV+ individuals of whom 43 were followed longitudinally, we found that HIV-1 RNAs are present in extracellular vesicles (EVs) derived from cerebrospinal fluid and serum of all individuals. We used seven digital droplet polymerase chain reaction assays to evaluate the transcriptional status of the latent reservoir. EV-associated viral RNA was more abundant in the CSF and correlated with neurocognitive dysfunction in both, the cross-sectional and longitudinal studies. Sequencing studies suggested compartmentalization of defective viral transcripts in the serum and CSF. These findings suggest previous studies have underestimated the viral burden and there is a significant relationship between latent viral transcription and CNS complications of long-term disease despite the adequate use of antiretrovirals.


Subject(s)
Extracellular Vesicles , HIV Infections , HIV-1 , RNA, Viral , Humans , Extracellular Vesicles/metabolism , HIV-1/genetics , HIV-1/physiology , RNA, Viral/genetics , Male , Cross-Sectional Studies , HIV Infections/virology , HIV Infections/blood , Female , Adult , Middle Aged , Longitudinal Studies , Viral Load , Virus Latency/genetics , Neurocognitive Disorders/virology , Neurocognitive Disorders/metabolism , Neurocognitive Disorders/etiology
7.
Front Neurol ; 15: 1360128, 2024.
Article in English | MEDLINE | ID: mdl-38742044

ABSTRACT

Introduction: Nontuberculous mycobacteria (NTM) mediated infections are important to consider in cases with neuroinflammatory presentations. We aimed to characterize cases of NTM with neurological manifestations at the National Institutes of Health (NIH) Clinical Center and review the relevant literature. Materials and methods: Between January 1995 and December 2020, six cases were identified. Records were reviewed for demographic, clinical, and radiological characteristics. A MEDLINE search found previously reported cases. Data were extracted, followed by statistical analysis to compare two groups [cases with slow-growing mycobacteria (SGM) vs. those with rapidly growing mycobacteria (RGM)] and evaluate for predictors of survival. NIH cases were evaluated for clinical and radiological characteristics. Cases from the literature were reviewed to determine the differences between SGM and RGM cases and to identify predictors of survival. Results: Six cases from NIH were identified (age 41 ± 13, 83% male). Five cases were caused by SGM [Mycobacterium avium complex (MAC) n = 4; Mycobacterium haemophilum n = 1] and one due to RGM (Mycobacterium abscessus). Underlying immune disorders were identified only in the SGM cases [genetic (n = 2), HIV (n = 1), sarcoidosis (n = 1), and anti-interferon-gamma antibodies (n = 1)]. All cases were diagnosed using tissue analysis. A literature review found 81 reports on 125 cases (SGM n = 85, RGM n = 38, non-identified n = 2). No immune disorder was reported in 26 cases (21%). Within SGM cases, the most common underlying disease was HIV infection (n = 55, 65%), and seizures and focal lesions were more common. In RGM cases, the most common underlying condition was neurosurgical intervention or implants (55%), and headaches and meningeal signs were common. Tissue-based diagnosis was used more for SGM than RGM (39% vs. 13%, p = 0.04). Survival rates were similar in both groups (48% SGM and 55% in RGM). Factors associated with better survival were a solitary CNS lesion (OR 5.9, p = 0.01) and a diagnosis made by CSF sampling only (OR 9.9, p = 0.04). Discussion: NTM infections cause diverse neurological manifestations, with some distinctions between SGM and RGM infections. Tissue sampling may be necessary to establish the diagnosis, and an effort should be made to identify an underlying immune disorder.

8.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200253, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788180

ABSTRACT

BACKGROUND AND OBJECTIVES: The diagnosis of multiple sclerosis (MS) can be challenging in clinical practice because MS presentation can be atypical and mimicked by other diseases. We evaluated the diagnostic performance, alone or in combination, of the central vein sign (CVS), paramagnetic rim lesion (PRL), and cortical lesion (CL), as well as their association with clinical outcomes. METHODS: In this multicenter observational study, we first conducted a cross-sectional analysis of the CVS (proportion of CVS-positive lesions or simplified determination of CVS in 3/6 lesions-Select3*/Select6*), PRL, and CL in MS and non-MS cases on 3T-MRI brain images, including 3D T2-FLAIR, T2*-echo-planar imaging magnitude and phase, double inversion recovery, and magnetization prepared rapid gradient echo image sequences. Then, we longitudinally analyzed the progression independent of relapse and MRI activity (PIRA) in MS cases over the 2 years after study entry. Receiver operating characteristic curves were used to test diagnostic performance and regression models to predict diagnosis and clinical outcomes. RESULTS: The presence of ≥41% CVS-positive lesions/≥1 CL/≥1 PRL (optimal cutoffs) had 96%/90%/93% specificity, 97%/84%/60% sensitivity, and 0.99/0.90/0.77 area under the curve (AUC), respectively, to distinguish MS (n = 185) from non-MS (n = 100) cases. The Select3*/Select6* algorithms showed 93%/95% specificity, 97%/89% sensitivity, and 0.95/0.92 AUC. The combination of CVS, CL, and PRL improved the diagnostic performance, especially when Select3*/Select6* were used (93%/94% specificity, 98%/96% sensitivity, 0.99/0.98 AUC; p = 0.002/p < 0.001). In MS cases (n = 185), both CL and PRL were associated with higher MS disability and severity. Longitudinal analysis (n = 61) showed that MS cases with >4 PRL at baseline were more likely to experience PIRA at 2-year follow-up (odds ratio 17.0, 95% confidence interval: 2.1-138.5; p = 0.008), whereas no association was observed between other baseline MRI measures and PIRA, including the number of CL. DISCUSSION: The combination of CVS, CL, and PRL can improve MS differential diagnosis. CL and PRL also correlated with clinical measures of poor prognosis, with PRL being a predictor of disability accrual independent of clinical/MRI activity.


Subject(s)
Magnetic Resonance Imaging , Multiple Sclerosis , Humans , Female , Male , Adult , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/diagnosis , Middle Aged , Cross-Sectional Studies , Prognosis , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Veins/diagnostic imaging , Cerebral Veins/pathology , Disease Progression , Longitudinal Studies
9.
JAMA ; 331(13): 1109-1121, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38497797

ABSTRACT

Importance: Since 2015, US government and related personnel have reported dizziness, pain, visual problems, and cognitive dysfunction after experiencing intrusive sounds and head pressure. The US government has labeled these anomalous health incidents (AHIs). Objective: To assess whether participants with AHIs differ significantly from US government control participants with respect to clinical, research, and biomarker assessments. Design, Setting, and Participants: Exploratory study conducted between June 2018 and July 2022 at the National Institutes of Health Clinical Center, involving 86 US government staff and family members with AHIs from Cuba, Austria, China, and other locations as well as 30 US government control participants. Exposures: AHIs. Main Outcomes and Measures: Participants were assessed with extensive clinical, auditory, vestibular, balance, visual, neuropsychological, and blood biomarkers (glial fibrillary acidic protein and neurofilament light) testing. The patients were analyzed based on the risk characteristics of the AHI identifying concerning cases as well as geographic location. Results: Eighty-six participants with AHIs (42 women and 44 men; mean [SD] age, 42.1 [9.1] years) and 30 vocationally matched government control participants (11 women and 19 men; mean [SD] age, 43.8 [10.1] years) were included in the analyses. Participants with AHIs were evaluated a median of 76 days (IQR, 30-537) from the most recent incident. In general, there were no significant differences between participants with AHIs and control participants in most tests of auditory, vestibular, cognitive, or visual function as well as levels of the blood biomarkers. Participants with AHIs had significantly increased fatigue, depression, posttraumatic stress, imbalance, and neurobehavioral symptoms compared with the control participants. There were no differences in these findings based on the risk characteristics of the incident or geographic location of the AHIs. Twenty-four patients (28%) with AHI presented with functional neurological disorders. Conclusions and Relevance: In this exploratory study, there were no significant differences between individuals reporting AHIs and matched control participants with respect to most clinical, research, and biomarker measures, except for objective and self-reported measures of imbalance and symptoms of fatigue, posttraumatic stress, and depression. This study did not replicate the findings of previous studies, although differences in the populations included and the timing of assessments limit direct comparisons.


Subject(s)
Family , Government , Male , Humans , Female , Adult , Biomarkers , Fatigue , Security Measures
10.
JAMA ; 331(13): 1122-1134, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38497822

ABSTRACT

Importance: US government personnel stationed internationally have reported anomalous health incidents (AHIs), with some individuals experiencing persistent debilitating symptoms. Objective: To assess the potential presence of magnetic resonance imaging (MRI)-detectable brain lesions in participants with AHIs, with respect to a well-matched control group. Design, Setting, and Participants: This exploratory study was conducted at the National Institutes of Health (NIH) Clinical Center and the NIH MRI Research Facility between June 2018 and November 2022. Eighty-one participants with AHIs and 48 age- and sex-matched control participants, 29 of whom had similar employment as the AHI group, were assessed with clinical, volumetric, and functional MRI. A high-quality diffusion MRI scan and a second volumetric scan were also acquired during a different session. The structural MRI acquisition protocol was optimized to achieve high reproducibility. Forty-nine participants with AHIs had at least 1 additional imaging session approximately 6 to 12 months from the first visit. Exposure: AHIs. Main Outcomes and Measures: Group-level quantitative metrics obtained from multiple modalities: (1) volumetric measurement, voxel-wise and region of interest (ROI)-wise; (2) diffusion MRI-derived metrics, voxel-wise and ROI-wise; and (3) ROI-wise within-network resting-state functional connectivity using functional MRI. Exploratory data analyses used both standard, nonparametric tests and bayesian multilevel modeling. Results: Among the 81 participants with AHIs, the mean (SD) age was 42 (9) years and 49% were female; among the 48 control participants, the mean (SD) age was 43 (11) years and 42% were female. Imaging scans were performed as early as 14 days after experiencing AHIs with a median delay period of 80 (IQR, 36-544) days. After adjustment for multiple comparisons, no significant differences between participants with AHIs and control participants were found for any MRI modality. At an unadjusted threshold (P < .05), compared with control participants, participants with AHIs had lower intranetwork connectivity in the salience networks, a larger corpus callosum, and diffusion MRI differences in the corpus callosum, superior longitudinal fasciculus, cingulum, inferior cerebellar peduncle, and amygdala. The structural MRI measurements were highly reproducible (median coefficient of variation <1% across all global volumetric ROIs and <1.5% for all white matter ROIs for diffusion metrics). Even individuals with large differences from control participants exhibited stable longitudinal results (typically, <±1% across visits), suggesting the absence of evolving lesions. The relationships between the imaging and clinical variables were weak (median Spearman ρ = 0.10). The study did not replicate the results of a previously published investigation of AHIs. Conclusions and Relevance: In this exploratory neuroimaging study, there were no significant differences in imaging measures of brain structure or function between individuals reporting AHIs and matched control participants after adjustment for multiple comparisons.


Subject(s)
Diffusion Tensor Imaging , White Matter , Humans , Female , Adult , Male , Diffusion Tensor Imaging/methods , Reproducibility of Results , Bayes Theorem , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Neuroimaging , White Matter/pathology , Family , Government , Security Measures
11.
JACC Case Rep ; 29(6): 102236, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38549855

ABSTRACT

Hypertrophic cardiomyopathy is the most common inherited cardiomyopathy, with a prevalence of 1:200 to 1:500. Cardiac amyloidosis, another cardiomyopathy caused by myocardial deposition of abnormally folded TTR protein, can be acquired or hereditary. The presence of pathogenic TTR gene variants in patients with phenotypic HCM is an underrecognized and clinically important entity.

12.
Mol Oncol ; 18(8): 1904-1922, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38506049

ABSTRACT

An immunosuppressive tumor microenvironment promotes tumor growth and is one of the main factors limiting the response to cancer immunotherapy. We have previously reported that inhibition of vacuolar protein sorting 34 (VPS34), a crucial lipid kinase in the autophagy/endosomal trafficking pathway, decreases tumor growth in several cancer models, increases infiltration of immune cells and sensitizes tumors to anti-programmed cell death protein 1/programmed cell death 1 ligand 1 therapy by upregulation of C-C motif chemokine 5 (CCL5) and C-X-C motif chemokine 10 (CXCL10) chemokines. The purpose of this study was to investigate the signaling mechanism leading to the VPS34-dependent chemokine increase. NanoString gene expression analysis was applied to tumors from mice treated with the VPS34 inhibitor SB02024 to identify key pathways involved in the anti-tumor response. We showed that VPS34 inhibitors increased the secretion of T-cell-recruitment chemokines in a cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING)-dependent manner in cancer cells. Both pharmacological and small interfering RNA (siRNA)-mediated VPS34 inhibition increased cGAS/STING-mediated expression and secretion of CCL5 and CXCL10. The combination of VPS34 inhibitor and STING agonist further induced cytokine release in both human and murine cancer cells as well as monocytic or dendritic innate immune cells. Finally, the VPS34 inhibitor SB02024 sensitized B16-F10 tumor-bearing mice to STING agonist treatment and significantly improved mice survival. These results show that VPS34 inhibition augments the cGAS/STING pathway, leading to greater tumor control through immune-mediated mechanisms. We propose that pharmacological VPS34 inhibition may synergize with emerging therapies targeting the cGAS/STING pathway.


Subject(s)
Class III Phosphatidylinositol 3-Kinases , Interferon Type I , Membrane Proteins , Signal Transduction , Animals , Membrane Proteins/metabolism , Membrane Proteins/agonists , Class III Phosphatidylinositol 3-Kinases/metabolism , Humans , Signal Transduction/drug effects , Mice , Cell Line, Tumor , Interferon Type I/metabolism , Nucleotidyltransferases/metabolism , Mice, Inbred C57BL , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
13.
bioRxiv ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38370808

ABSTRACT

Mutational activation of KRAS occurs commonly in lung carcinogenesis and, with the recent FDA approval of covalent inhibitors of KRAS G12C such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRAS G12C -driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients that do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRAS G12C , efforts are underway to develop effective combination therapies. Here we report that inhibition of KRAS G12C signaling increases autophagy in KRAS G12C expressing lung cancer cells. Moreover, the combination of DCC-3116, a selective ULK1/2 inhibitor, plus sotorasib displays cooperative/synergistic suppression of human KRAS G12C -driven lung cancer cell proliferation in vitro and superior tumor control in vivo . Additionally, in genetically engineered mouse models of KRAS G12C -driven NSCLC, inhibition of either KRAS G12C or ULK1/2 decreases tumor burden and increases mouse survival. Consequently, these data suggest that ULK1/2-mediated autophagy is a pharmacologically actionable cytoprotective stress response to inhibition of KRAS G12C in lung cancer.

14.
Ann Neurol ; 95(5): 941-950, 2024 May.
Article in English | MEDLINE | ID: mdl-38362961

ABSTRACT

OBJECTIVE: To investigate the relationship between neurocognitive deficits and structural changes on brain magnetic resonance imaging in people living with HIV (PLWH) with good virological control on combination antiretroviral therapy, compared with socioeconomically matched control participants recruited from the same communities. METHODS: Brain magnetic resonance imaging scans, and clinical and neuropsychological data were obtained from virologically controlled PLWH (viral load of <50 c/mL and at least 1 year of combination antiretroviral therapy) and socioeconomically matched control participants. Magnetic resonance imaging was carried out on 3 T scanner with 8-channel head coils and segmented using Classification using Derivative-based Features. Multiple regression analysis was performed to examine the association between brain volume and various clinical and neuropsychiatric parameters adjusting for age, race, and sex. To evaluate longitudinal changes in brain volumes, a random coefficient model was used to evaluate the changes over time (age) adjusting for sex and race. RESULTS: The cross-sectional study included 164 PLWH and 51 controls, and the longitudinal study included 68 PLWH and 20 controls with 2 or more visits (mean 2.2 years, range 0.8-5.1 years). Gray matter (GM) atrophy rate was significantly higher in PLWH compared with control participants, and importantly, the GM and global atrophy was associated with the various neuropsychological domain scores. Higher volume of white matter hyperintensities were associated with increased atherosclerotic cardiovascular disease risk score, and decreased executive functioning and memory domain scores in PLWH. INTERPRETATION: These findings suggest ongoing neurological damage even in virologically controlled participants, with significant implications for clinical management of PLWH. ANN NEUROL 2024;95:941-950.


Subject(s)
Gray Matter , HIV Infections , Neurocognitive Disorders , White Matter , Humans , Cross-Sectional Studies , HIV Infections/complications , HIV Infections/diagnostic imaging , HIV Infections/pathology , HIV Infections/therapy , Neurocognitive Disorders/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Adult , Middle Aged , Male , Female , Cerebrum/diagnostic imaging , Cerebrum/pathology , Longitudinal Studies
15.
Nanoscale ; 16(4): 1999-2011, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38193595

ABSTRACT

The acidic pH of tumor tissue has been used to trigger drug release from nanoparticles. However, dynamic interactions between tumor pH and vascularity present challenges to optimize therapy to particular microenvironment conditions. Despite recent development of pH-sensitive nanomaterials that can accurately quantify drug release from nanoparticles, tailoring release to maximize tumor response remains elusive. This study hypothesizes that a computational modeling-based platform that simulates the heterogeneously vascularized tumor microenvironment can enable evaluation of the complex intra-tumoral dynamics involving nanoparticle transport and pH-dependent drug release, and predict optimal nanoparticle parameters to maximize the response. To this end, SPNCD nanoparticles comprising superparamagnetic cores of iron oxide (Fe3O4) and a poly(lactide-co-glycolide acid) shell loaded with doxorubicin (DOX) were fabricated. Drug release was measured in vitro as a function of pH. A 2D model of vascularized tumor growth was calibrated to experimental data and used to evaluate SPNCD effect as a function of drug release rate and tissue vascular heterogeneity. Simulations show that pH-dependent drug release from SPNCD delays tumor regrowth more than DOX alone across all levels of vascular heterogeneity, and that SPNCD significantly inhibit tumor radius over time compared to systemic DOX. The minimum tumor radius forecast by the model was comparable to previous in vivo SPNCD inhibition data. Sensitivity analyses of the SPNCD pH-dependent drug release rate indicate that slower rates are more inhibitory than faster rates. We conclude that an integrated computational and experimental approach enables tailoring drug release by pH-responsive nanomaterials to maximize the tumor response.


Subject(s)
Nanoparticles , Neoplasms , Humans , Doxorubicin/pharmacology , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Hydrogen-Ion Concentration , Drug Carriers/pharmacology , Drug Liberation , Cell Line, Tumor , Tumor Microenvironment
16.
MAbs ; 16(1): 2300155, 2024.
Article in English | MEDLINE | ID: mdl-38241085

ABSTRACT

Rozanolixizumab is a humanized anti-neonatal Fc receptor (FcRn) monoclonal antibody (mAb) of the immunoglobulin G4 (IgG4) sub-class, currently in clinical development for the treatment of IgG autoantibody-driven diseases. This format is frequently used for therapeutic mAbs due to its intrinsic lower affinity for Fc gamma receptors (FcγR) and lack of C1q engagement. However, with growing evidence suggesting that no Fc-containing agent is truly "silent" in this respect, we explored the engagement of FcγRs and potential functional consequences with rozanolixizumab. In the study presented here, rozanolixizumab was shown to bind to FcγRs in both protein-protein and cell-based assays, and the kinetic data were broadly as expected based on published data for an IgG4 mAb. Rozanolixizumab was also able to mediate antibody bipolar bridging (ABB), a phenomenon that led to a reduction of labeled FcγRI from the surface of human macrophages in an FcRn-dependent manner. However, the presence of exogenous human IgG, even at low concentrations, was able to prevent both binding and ABB events. Furthermore, data from in vitro experiments using relevant human cell types that express both FcRn and FcγRI indicated no evidence for functional sequelae in relation to cellular activation events (e.g., intracellular signaling, cytokine production) upon either FcRn or FcγR binding of rozanolixizumab. These data raise important questions about whether therapeutic antagonistic mAbs like rozanolixizumab would necessarily engage FcγRs at doses typically administered to patients in the clinic, and hence challenge the relevance and interpretation of in vitro assays performed in the absence of competing IgG.


Subject(s)
Receptors, Fc , Receptors, IgG , Humans , Antibodies, Monoclonal, Humanized/metabolism , Antibodies, Monoclonal , Immunoglobulin G , Histocompatibility Antigens Class I
17.
Future Oncol ; 20(10): 593-601, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37593881

ABSTRACT

Tenosynovial giant cell tumor (TGCT) is a rare, locally aggressive neoplasm that occurs in the synovium of joints, bursae, or tendon sheaths and is caused by upregulation of the CSF1 gene. Vimseltinib is an oral switch-control tyrosine kinase inhibitor specifically designed to selectively and potently inhibit the CSF1 receptor. Here, we describe the rationale and design for the phase III MOTION trial (NCT05059262), which aims to evaluate the efficacy and safety of vimseltinib in participants with TGCT not amenable to surgical resection. In part 1, participants are randomized to receive vimseltinib 30 mg twice weekly or matching placebo for ≤24 weeks. Part 2 is a long-term treatment phase in which participants will receive open-label vimseltinib.


Tenosynovial giant cell tumor (or TGCT) is a rare, noncancerous tumor that grows in the soft tissue lining the spaces of joints and bursae (fluid-filled sacs that work to reduce friction in the joints). These tumors are linked to increased levels of a protein called CSF1. While this condition is typically treated with surgery, some patients may not be candidates for surgical removal of the tumor due to factors such as location or complexity of the tumor; therefore, drug treatments are needed to help these patients. Vimseltinib is an investigational oral drug specifically designed to inhibit the receptor to which the CSF1 protein binds. In this article, we describe the rationale and design for a phase III clinical trial that will test how well vimseltinib works in participants with TGCT who are not candidates for surgery. In the first part of the study, participants are randomly assigned to receive vimseltinib 30 mg twice weekly or a matching placebo (inactive substance) for up to 24 weeks. This first part is blinded, so participants will not know if they are receiving vimseltinib or the placebo. The second part of the study is a long-term treatment phase in which all participants will receive vimseltinib (unblinded). Clinical Trial Registration: NCT05059262 (ClinicalTrials.gov).


Subject(s)
Giant Cell Tumor of Tendon Sheath , Humans , Giant Cell Tumor of Tendon Sheath/drug therapy , Giant Cell Tumor of Tendon Sheath/genetics , Protein Kinase Inhibitors/therapeutic use , Randomized Controlled Trials as Topic , Clinical Trials, Phase III as Topic
18.
J Vis Exp ; (200)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37955389

ABSTRACT

Integrated preclinical multimodal imaging systems, such as X-ray computed tomography (CT) combined with positron emission tomography (PET) or magnetic resonance imaging (MRI) combined with PET, are widely available and typically provide robustly co-registered volumes. However, separate devices are often needed to combine a standalone MRI with an existing PET-CT or to incorporate additional data from optical tomography or high-resolution X-ray microtomography. This necessitates image co-registration, which involves complex aspects such as multimodal mouse bed design, fiducial marker inclusion, image reconstruction, and software-based image fusion. Fiducial markers often pose problems for in vivo data due to dynamic range issues, limitations on the imaging field of view, difficulties in marker placement, or marker signal loss over time (e.g., from drying or decay). These challenges must be understood and addressed by each research group requiring image co-registration, resulting in repeated efforts, as the relevant details are rarely described in existing publications. This protocol outlines a general workflow that overcomes these issues. Although a differential transformation is initially created using fiducial markers or visual structures, such markers are not required in production scans. The requirements for the volume data and the metadata generated by the reconstruction software are detailed. The discussion covers achieving and verifying requirements separately for each modality. A phantom-based approach is described to generate a differential transformation between the coordinate systems of two imaging modalities. This method showcases how to co-register production scans without fiducial markers. Each step is illustrated using available software, with recommendations for commercially available phantoms. The feasibility of this approach with different combinations of imaging modalities installed at various sites is showcased.


Subject(s)
Positron Emission Tomography Computed Tomography , Tomography, X-Ray Computed , Animals , Mice , Tomography, X-Ray Computed/methods , Positron-Emission Tomography/methods , Fiducial Markers , Software , Magnetic Resonance Imaging/methods , Phantoms, Imaging
20.
Front Allergy ; 4: 1270326, 2023.
Article in English | MEDLINE | ID: mdl-37901762

ABSTRACT

Introduction: Allergic reactions are mediated by human IgE antibodies that bind to and cross-link allergen molecules. The sites on allergens that are recognized by IgE antibodies have been difficult to investigate because of the paucity of IgE antibodies in a human serum. Here, we report the production of unique human IgE monoclonal antibodies to major inhaled allergens and food allergens that can be produced at scale in perpetuity. Materials and methods: The IgE antibodies were derived from peripheral blood mononuclear cells of symptomatic allergic patients, mostly children aged 3-18 years, using hybridoma fusion technology. Total IgE and allergen-specific IgE was measured by ImmunoCAP. Their specificity was confirmed through ELISA and immunoblotting. Allergenic potency measurements were determined by ImmunoCAP inhibition. Biological activity was determined in vitro by comparing ß-hexosaminidase release from a humanized rat basophilic cell line. Results: Human IgE monoclonal antibodies (n = 33) were derived from 17 allergic patients with symptoms of allergic rhinitis, asthma, atopic dermatitis, food allergy, eosinophilic esophagitis, or red meat allergy. The antibodies were specific for five inhaled allergens, nine food allergens, and alpha-gal and had high levels of IgE (53,450-1,702,500 kU/L) with ratios of specific IgE to total IgE ranging from <0.01 to 1.39. Sigmoidal allergen binding curves were obtained through ELISA, with low limits of detection (<1 kU/L). Allergen specificity was confirmed through immunoblotting. Pairs of IgE monoclonal antibodies to Ara h 6 were identified that cross-linked after allergen stimulation and induced release of significant levels of ß-hexosaminidase (35%-80%) from a humanized rat basophilic cell line. Conclusions: Human IgE monoclonal antibodies are unique antibody molecules with potential applications in allergy diagnosis, allergen standardization, and identification of allergenic epitopes for the development of allergy therapeutics. The IgE antibody probes will enable the unequivocal localization and validation of allergenic epitopes.

SELECTION OF CITATIONS
SEARCH DETAIL