Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 2917, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575562

ABSTRACT

VISTA, an inhibitory myeloid-T-cell checkpoint, holds promise as a target for cancer immunotherapy. However, its effective targeting has been impeded by issues such as rapid clearance and cytokine release syndrome observed with previous VISTA antibodies. Here we demonstrate that SNS-101, a newly developed pH-selective VISTA antibody, addresses these challenges. Structural and biochemical analyses confirmed the pH-selectivity and unique epitope targeted by SNS-101. These properties confer favorable pharmacokinetic and safety profiles on SNS-101. In syngeneic tumor models utilizing human VISTA knock-in mice, SNS-101 shows in vivo efficacy when combined with a PD-1 inhibitor, modulates cytokine and chemokine signaling, and alters the tumor microenvironment. In summary, SNS-101, currently in Phase I clinical trials, emerges as a promising therapeutic biologic for a wide range of patients whose cancer is refractory to current immunotherapy regimens.


Subject(s)
Neoplasms , Programmed Cell Death 1 Receptor , Humans , Mice , Animals , B7 Antigens , Antibodies , Neoplasms/drug therapy , Immunotherapy , Hydrogen-Ion Concentration , Tumor Microenvironment
2.
Cell Rep ; 43(2): 113678, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38236773

ABSTRACT

The DNAJ-PKAc fusion kinase is a defining feature of fibrolamellar carcinoma (FLC). FLC tumors are notoriously resistant to standard chemotherapies, with aberrant kinase activity assumed to be a contributing factor. By combining proximity proteomics, biochemical analyses, and live-cell photoactivation microscopy, we demonstrate that DNAJ-PKAc is not constrained by A-kinase anchoring proteins. Consequently, the fusion kinase phosphorylates a unique array of substrates, including proteins involved in translation and the anti-apoptotic factor Bcl-2-associated athanogene 2 (BAG2), a co-chaperone recruited to the fusion kinase through association with Hsp70. Tissue samples from patients with FLC exhibit increased levels of BAG2 in primary and metastatic tumors. Furthermore, drug studies implicate the DNAJ-PKAc/Hsp70/BAG2 axis in potentiating chemotherapeutic resistance. We find that the Bcl-2 inhibitor navitoclax enhances sensitivity to etoposide-induced apoptosis in cells expressing DNAJ-PKAc. Thus, our work indicates BAG2 as a marker for advanced FLC and a chemotherapeutic resistance factor in DNAJ-PKAc signaling scaffolds.


Subject(s)
Carcinoma, Hepatocellular , Humans , Cell Survival , Carcinoma, Hepatocellular/drug therapy , Apoptosis , HSP70 Heat-Shock Proteins , Proto-Oncogene Proteins c-bcl-2 , Molecular Chaperones
3.
Antibodies (Basel) ; 12(3)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37753969

ABSTRACT

Immune checkpoints and other immunoregulatory targets can be difficult to precisely target due to expression on non-tumor immune cells critical to maintaining immune homeostasis in healthy tissues. On-target/off-tumor binding of therapeutics results in significant pharmacokinetic and pharmacodynamic problems. Target-mediated drug disposition (TMDD) significantly limits effective intratumoral drug levels and adversely affects anti-tumor efficacy. Target engagement outside the tumor environment may lead to severe immune-related adverse events (irAEs), resulting in a narrowing of the therapeutic window, sub-optimal dosing, or cessation of drug development altogether. Overcoming these challenges has become tractable through recent advances in antibody engineering and screening approaches. Here, we review the discovery and development of conditionally active antibodies with minimal binding to target at physiologic pH but high-affinity target binding at the low pH of the tumor microenvironment by focusing on the discovery and improved properties of pH-dependent mAbs targeting two T cell checkpoints, VISTA and CTLA-4.

4.
bioRxiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37425703

ABSTRACT

The DNAJ-PKAc fusion kinase is a defining feature of the adolescent liver cancer fibrolamellar carcinoma (FLC). A single lesion on chromosome 19 generates this mutant kinase by creating a fused gene encoding the chaperonin binding domain of Hsp40 (DNAJ) in frame with the catalytic core of protein kinase A (PKAc). FLC tumors are notoriously resistant to standard chemotherapies. Aberrant kinase activity is assumed to be a contributing factor. Yet recruitment of binding partners, such as the chaperone Hsp70, implies that the scaffolding function of DNAJ- PKAc may also underlie pathogenesis. By combining proximity proteomics with biochemical analyses and photoactivation live-cell imaging we demonstrate that DNAJ-PKAc is not constrained by A-kinase anchoring proteins. Consequently, the fusion kinase phosphorylates a unique array of substrates. One validated DNAJ-PKAc target is the Bcl-2 associated athanogene 2 (BAG2), a co-chaperone recruited to the fusion kinase through association with Hsp70. Immunoblot and immunohistochemical analyses of FLC patient samples correlate increased levels of BAG2 with advanced disease and metastatic recurrences. BAG2 is linked to Bcl-2, an anti-apoptotic factor that delays cell death. Pharmacological approaches tested if the DNAJ- PKAc/Hsp70/BAG2 axis contributes to chemotherapeutic resistance in AML12 DNAJ-PKAc hepatocyte cell lines using the DNA damaging agent etoposide and the Bcl-2 inhibitor navitoclax. Wildtype AML12 cells were susceptible to each drug alone and in combination. In contrast, AML12 DNAJ-PKAc cells were moderately affected by etoposide, resistant to navitoclax, but markedly susceptible to the drug combination. These studies implicate BAG2 as a biomarker for advanced FLC and a chemotherapeutic resistance factor in DNAJ-PKAc signaling scaffolds.

5.
Cell Rep ; 40(2): 111073, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35830806

ABSTRACT

Mutations in the catalytic subunit of protein kinase A (PKAc) drive the stress hormone disorder adrenal Cushing's syndrome. We define mechanisms of action for the PKAc-L205R and W196R variants. Proximity proteomic techniques demonstrate that both Cushing's mutants are excluded from A kinase-anchoring protein (AKAP)-signaling islands, whereas live-cell photoactivation microscopy reveals that these kinase mutants indiscriminately diffuse throughout the cell. Only cAMP analog drugs that displace native PKAc from AKAPs enhance cortisol release. Rescue experiments that incorporate PKAc mutants into AKAP complexes abolish cortisol overproduction, indicating that kinase anchoring restores normal endocrine function. Analyses of adrenal-specific PKAc-W196R knockin mice and Cushing's syndrome patient tissue reveal defective signaling mechanisms of the disease. Surprisingly each Cushing's mutant engages a different mitogenic-signaling pathway, with upregulation of YAP/TAZ by PKAc-L205R and ERK kinase activation by PKAc-W196R. Thus, aberrant spatiotemporal regulation of each Cushing's variant promotes the transmission of distinct downstream pathogenic signals.


Subject(s)
Cushing Syndrome , Animals , Catalytic Domain/genetics , Cushing Syndrome/genetics , Cushing Syndrome/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Hydrocortisone/metabolism , Mice , Proteomics
6.
J Biol Chem ; 295(31): 10749-10765, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32482893

ABSTRACT

Compartmentalization of macromolecules is a ubiquitous molecular mechanism that drives numerous cellular functions. The appropriate organization of enzymes in space and time enables the precise transmission and integration of intracellular signals. Molecular scaffolds constrain signaling enzymes to influence the regional modulation of these physiological processes. Mitochondrial targeting of protein kinases and protein phosphatases provides a means to locally control the phosphorylation status and action of proteins on the surface of this organelle. Dual-specificity protein kinase A anchoring protein 1 (dAKAP1) is a multivalent binding protein that targets protein kinase A (PKA), RNAs, and other signaling enzymes to the outer mitochondrial membrane. Many AKAPs recruit a diverse set of binding partners that coordinate a broad range of cellular processes. Here, results of MS and biochemical analyses reveal that dAKAP1 anchors additional components, including the ribonucleoprotein granule components La-related protein 4 (LARP4) and polyadenylate-binding protein 1 (PABPC1). Local translation of mRNAs at organelles is a means to spatially control the synthesis of proteins. RNA-Seq data demonstrate that dAKAP1 binds mRNAs encoding proteins required for mitochondrial metabolism, including succinate dehydrogenase. Functional studies suggest that the loss of dAKAP1-RNA interactions reduces mitochondrial electron transport chain activity. Hence, dAKAP1 plays a previously unappreciated role as a molecular interface between second messenger signaling and local protein synthesis machinery.


Subject(s)
A Kinase Anchor Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Protein Biosynthesis , Second Messenger Systems , A Kinase Anchor Proteins/genetics , Autoantigens/genetics , Autoantigens/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Electron Transport Chain Complex Proteins/biosynthesis , HEK293 Cells , Humans , Mitochondria/genetics , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Protein I/metabolism , RNA-Seq , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , SS-B Antigen
7.
Cell Rep ; 31(2): 107509, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294439

ABSTRACT

Fibrolamellar carcinoma (FLC) is a rare, therapeutically intractable liver cancer that disproportionately affects youth. Although FLC tumors exhibit a distinct gene expression profile, the chromatin regulatory landscape and the genes most critical for tumor cell survival remain unclear. Here, we use chromatin run-on sequencing to discover ∼7,000 enhancers and 141 enhancer hotspots activated in FLC relative to nonmalignant liver. Bioinformatic analyses reveal aberrant ERK/MEK signaling and candidate master transcriptional regulators. We also define the genes most strongly associated with hotspots of FLC enhancer activity, including CA12 and SLC16A14. Treatment of FLC cell models with inhibitors of CA12 or SLC16A14 independently reduce cell viability and/or significantly enhance the effect of the MEK inhibitor cobimetinib. These findings highlight molecular targets for drug development, as well as drug combination approaches.


Subject(s)
Carcinoma, Hepatocellular/genetics , Enhancer Elements, Genetic/genetics , Adolescent , CA-125 Antigen/genetics , Carcinogenesis/pathology , Cell Proliferation/genetics , Chromatin/genetics , Computational Biology/methods , Gene Expression Regulation, Neoplastic/genetics , Humans , Liver/pathology , Liver Neoplasms/pathology , MAP Kinase Signaling System/genetics , Membrane Proteins/genetics , Monocarboxylic Acid Transporters/genetics , Oncogenes/genetics , Sequence Analysis, DNA/methods , Signal Transduction/genetics
8.
Elife ; 82019 12 24.
Article in English | MEDLINE | ID: mdl-31872801

ABSTRACT

Deciphering how signaling enzymes operate within discrete microenvironments is fundamental to understanding biological processes. A-kinase anchoring proteins (AKAPs) restrict the range of action of protein kinases within intracellular compartments. We exploited the AKAP targeting concept to create genetically encoded platforms that restrain kinase inhibitor drugs at distinct subcellular locations. Local Kinase Inhibition (LoKI) allows us to ascribe organelle-specific functions to broad specificity kinases. Using chemical genetics, super resolution microscopy, and live-cell imaging we discover that centrosomal delivery of Polo-like kinase 1 (Plk1) and Aurora A (AurA) inhibitors attenuates kinase activity, produces spindle defects, and prolongs mitosis. Targeted inhibition of Plk1 in zebrafish embryos illustrates how centrosomal Plk1 underlies mitotic spindle assembly. Inhibition of kinetochore-associated pools of AurA blocks phosphorylation of microtubule-kinetochore components. This versatile precision pharmacology tool enhances investigation of local kinase biology.


Subject(s)
A Kinase Anchor Proteins/genetics , Aurora Kinase A/genetics , Cell Cycle Proteins/genetics , Mitosis/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Animals , Aurora Kinase A/chemistry , Cell Cycle Proteins/chemistry , Centrosome/chemistry , Centrosome/ultrastructure , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Humans , Kinetochores/chemistry , Microtubules/genetics , Phosphorylation/genetics , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/chemistry , Proto-Oncogene Proteins/chemistry , Zebrafish/genetics , Zebrafish/growth & development , Polo-Like Kinase 1
9.
Elife ; 82019 05 07.
Article in English | MEDLINE | ID: mdl-31063128

ABSTRACT

Fibrolamellar carcinoma (FLC) is a rare liver cancer. FLCs uniquely produce DNAJ-PKAc, a chimeric enzyme consisting of a chaperonin-binding domain fused to the Cα subunit of protein kinase A. Biochemical analyses of clinical samples reveal that a unique property of this fusion enzyme is the ability to recruit heat shock protein 70 (Hsp70). This cellular chaperonin is frequently up-regulated in cancers. Gene-editing of mouse hepatocytes generated disease-relevant AML12DNAJ-PKAc cell lines. Further analyses indicate that the proto-oncogene A-kinase anchoring protein-Lbc is up-regulated in FLC and functions to cluster DNAJ-PKAc/Hsp70 sub-complexes with a RAF-MEK-ERK kinase module. Drug screening reveals Hsp70 and MEK inhibitor combinations that selectively block proliferation of AML12DNAJ-PKAc cells. Phosphoproteomic profiling demonstrates that DNAJ-PKAc biases the signaling landscape toward ERK activation and engages downstream kinase cascades. Thus, the oncogenic action of DNAJ-PKAc involves an acquired scaffolding function that permits recruitment of Hsp70 and mobilization of local ERK signaling.


Subject(s)
Carcinoma, Hepatocellular/physiopathology , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Fetal Proteins/metabolism , Liver Neoplasms/physiopathology , Molecular Chaperones/metabolism , Recombinant Fusion Proteins/metabolism , A Kinase Anchor Proteins/metabolism , Animals , Cell Line , Cell Proliferation , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , Fetal Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Hepatocytes/pathology , Humans , Mice , Models, Theoretical , Molecular Chaperones/genetics , Protein Binding , Proto-Oncogene Mas , Recombinant Fusion Proteins/genetics , Signal Transduction
10.
J Biol Chem ; 294(9): 3152-3168, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30598507

ABSTRACT

Breast cancer screening and new precision therapies have led to improved patient outcomes. Yet, a positive prognosis is less certain when primary tumors metastasize. Metastasis requires a coordinated program of cellular changes that promote increased survival, migration, and energy consumption. These pathways converge on mitochondrial function, where distinct signaling networks of kinases, phosphatases, and metabolic enzymes regulate these processes. The protein kinase A-anchoring protein dAKAP1 compartmentalizes protein kinase A (PKA) and other signaling enzymes at the outer mitochondrial membrane and thereby controls mitochondrial function and dynamics. Modulation of these processes occurs in part through regulation of dynamin-related protein 1 (Drp1). Here, we report an inverse relationship between the expression of dAKAP1 and mesenchymal markers in breast cancer. Molecular, cellular, and in silico analyses of breast cancer cell lines confirmed that dAKAP1 depletion is associated with impaired mitochondrial function and dynamics, as well as with increased glycolytic potential and invasiveness. Furthermore, disruption of dAKAP1-PKA complexes affected cell motility and mitochondrial movement toward the leading edge in invasive breast cancer cells. We therefore propose that depletion of dAKAP1-PKA "signaling islands" from the outer mitochondrial membrane augments progression toward metastatic breast cancer.


Subject(s)
A Kinase Anchor Proteins/metabolism , Breast Neoplasms/pathology , Cell Movement , Mitochondrial Membranes/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Mesoderm/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Dynamics , Neoplasm Invasiveness
11.
Proc Natl Acad Sci U S A ; 115(49): E11465-E11474, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30455320

ABSTRACT

A-kinase anchoring proteins (AKAPs) shape second-messenger signaling responses by constraining protein kinase A (PKA) at precise intracellular locations. A defining feature of AKAPs is a helical region that binds to regulatory subunits (RII) of PKA. Mining patient-derived databases has identified 42 nonsynonymous SNPs in the PKA-anchoring helices of five AKAPs. Solid-phase RII binding assays confirmed that 21 of these amino acid substitutions disrupt PKA anchoring. The most deleterious side-chain modifications are situated toward C-termini of AKAP helices. More extensive analysis was conducted on a valine-to-methionine variant in the PKA-anchoring helix of AKAP18. Molecular modeling indicates that additional density provided by methionine at position 282 in the AKAP18γ isoform deflects the pitch of the helical anchoring surface outward by 6.6°. Fluorescence polarization measurements show that this subtle topological change reduces RII-binding affinity 8.8-fold and impairs cAMP responsive potentiation of L-type Ca2+ currents in situ. Live-cell imaging of AKAP18γ V282M-GFP adducts led to the unexpected discovery that loss of PKA anchoring promotes nuclear accumulation of this polymorphic variant. Targeting proceeds via a mechanism whereby association with the PKA holoenzyme masks a polybasic nuclear localization signal on the anchoring protein. This led to the discovery of AKAP18ε: an exclusively nuclear isoform that lacks a PKA-anchoring helix. Enzyme-mediated proximity-proteomics reveal that compartment-selective variants of AKAP18 associate with distinct binding partners. Thus, naturally occurring PKA-anchoring-defective AKAP variants not only perturb dissemination of local second-messenger responses, but also may influence the intracellular distribution of certain AKAP18 isoforms.


Subject(s)
A Kinase Anchor Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/genetics , Membrane Proteins/metabolism , A Kinase Anchor Proteins/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression Regulation, Enzymologic , Genome-Wide Association Study , Humans , Membrane Proteins/genetics , Models, Molecular , Polymorphism, Single Nucleotide , Protein Binding , Protein Conformation , Protein Isoforms , Protein Transport
12.
J Cell Biol ; 217(6): 1895-1897, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29773583

ABSTRACT

The role of autophosphorylation of the type II regulatory subunit in activation of protein kinase A (PKA) has been a longstanding question. In this issue, Isensee et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201708053) use antibody tools that selectively recognize phosphorylated RII and the catalytic subunit active site to reexamine PKA holoenzyme activation mechanisms in neurons.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Animals , Enzyme Activation , Humans , Models, Biological , Phosphorylation
13.
Science ; 356(6344): 1288-1293, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28642438

ABSTRACT

Hormones can transmit signals through adenosine 3',5'-monophosphate (cAMP) to precise intracellular locations. The fidelity of these responses relies on the activation of localized protein kinase A (PKA) holoenzymes. Association of PKA regulatory type II (RII) subunits with A-kinase-anchoring proteins (AKAPs) confers location, and catalytic (C) subunits phosphorylate substrates. Single-particle electron microscopy demonstrated that AKAP79 constrains RII-C subassemblies within 150 to 250 angstroms of its targets. Native mass spectrometry established that these macromolecular assemblies incorporated stoichiometric amounts of cAMP. Chemical-biology- and live cell-imaging techniques revealed that catalytically active PKA holoenzymes remained intact within the cytoplasm. These findings indicate that the parameters of anchored PKA holoenzyme action are much more restricted than originally anticipated.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Holoenzymes/metabolism , Signal Transduction , A Kinase Anchor Proteins/metabolism , Animals , Cell Line, Tumor , Cyclic AMP/chemistry , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/genetics , Holoenzymes/chemistry , Humans , Mice , Microscopy, Electron , Mitochondria/enzymology , Phosphorylation , Protein Binding , Protein Stability , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
14.
ACS Chem Biol ; 10(6): 1502-10, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-25765284

ABSTRACT

A-Kinase Anchoring Proteins (AKAPs) coordinate complex signaling events by serving as spatiotemporal modulators of cAMP-dependent protein kinase activity in cells. Although AKAPs organize a plethora of diverse pathways, their cellular roles are often elusive due to the dynamic nature of these signaling complexes. AKAPs can interact with the type I or type II PKA holoenzymes by virtue of high-affinity interactions with the R-subunits. As a means to delineate AKAP-mediated PKA signaling in cells, we sought to develop isoform-selective disruptors of AKAP signaling. Here, we report the development of conformationally constrained peptides named RI-STapled Anchoring Disruptors (RI-STADs) that target the docking/dimerization domain of the type 1 regulatory subunit of PKA. These high-affinity peptides are isoform-selective for the RI isoforms, can outcompete binding by the classical AKAP disruptor Ht31, and can selectively displace RIα, but not RIIα, from binding the dual-specific AKAP149 complex. Importantly, these peptides are cell-permeable and disrupt Type I PKA-mediated phosphorylation events in the context of live cells. Hence, RI-STAD peptides are versatile cellular tools to selectively probe anchored type I PKA signaling events.


Subject(s)
A Kinase Anchor Proteins/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinase Type II/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinase Type I/antagonists & inhibitors , Peptides/chemistry , Protein Kinase Inhibitors/chemistry , Protein Subunits/antagonists & inhibitors , A Kinase Anchor Proteins/chemistry , A Kinase Anchor Proteins/metabolism , Amino Acid Sequence , Binding Sites/drug effects , Cell Line, Tumor , Cell Membrane Permeability , Cyclic AMP-Dependent Protein Kinase Type I/chemistry , Cyclic AMP-Dependent Protein Kinase Type I/metabolism , Cyclic AMP-Dependent Protein Kinase Type II/chemistry , Cyclic AMP-Dependent Protein Kinase Type II/metabolism , Humans , Kinetics , Molecular Sequence Data , Peptides/pharmacology , Phosphorylation , Protein Binding/drug effects , Protein Conformation , Protein Kinase Inhibitors/pharmacology , Protein Subunits/chemistry , Protein Subunits/metabolism
15.
EMBO J ; 33(5): 437-49, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24446487

ABSTRACT

Pathogenic bacteria introduce effector proteins directly into the cytosol of eukaryotic cells to promote invasion and colonization. OspG, a Shigella spp. effector kinase, plays a role in this process by helping to suppress the host inflammatory response. OspG has been reported to bind host E2 ubiquitin-conjugating enzymes activated with ubiquitin (E2~Ub), a key enzyme complex in ubiquitin transfer pathways. A co-crystal structure of the OspG/UbcH5c~Ub complex reveals that complex formation has important ramifications for the activity of both OspG and the UbcH5c~Ub conjugate. OspG is a minimal kinase domain containing only essential elements required for catalysis. UbcH5c~Ub binding stabilizes an active conformation of the kinase, greatly enhancing OspG kinase activity. In contrast, interaction with OspG stabilizes an extended, less reactive form of UbcH5c~Ub. Recognizing conserved E2 features, OspG can interact with at least ten distinct human E2s~Ub. Mouse oral infection studies indicate that E2~Ub conjugates act as novel regulators of OspG effector kinase function in eukaryotic host cells.


Subject(s)
Protein Kinases/metabolism , Shigella flexneri/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin/metabolism , Virulence Factors/metabolism , Animals , Cell Line , Crystallography, X-Ray , Humans , Mice , Models, Molecular , Protein Conformation , Protein Kinases/chemistry , Protein Multimerization , Ubiquitin/chemistry , Ubiquitin-Conjugating Enzymes/chemistry , Virulence Factors/chemistry
16.
Elife ; 2: e01319, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24192038

ABSTRACT

Anchoring proteins sequester kinases with their substrates to locally disseminate intracellular signals and avert indiscriminate transmission of these responses throughout the cell. Mechanistic understanding of this process is hampered by limited structural information on these macromolecular complexes. A-kinase anchoring proteins (AKAPs) spatially constrain phosphorylation by cAMP-dependent protein kinases (PKA). Electron microscopy and three-dimensional reconstructions of type-II PKA-AKAP18γ complexes reveal hetero-pentameric assemblies that adopt a range of flexible tripartite configurations. Intrinsically disordered regions within each PKA regulatory subunit impart the molecular plasticity that affords an ∼16 nanometer radius of motion to the associated catalytic subunits. Manipulating flexibility within the PKA holoenzyme augmented basal and cAMP responsive phosphorylation of AKAP-associated substrates. Cell-based analyses suggest that the catalytic subunit remains within type-II PKA-AKAP18γ complexes upon cAMP elevation. We propose that the dynamic movement of kinase sub-structures, in concert with the static AKAP-regulatory subunit interface, generates a solid-state signaling microenvironment for substrate phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.01319.001.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Chromatography, Gel , Microscopy, Electron , Phosphorylation , Substrate Specificity
17.
Curr Biol ; 23(12): R515-7, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23787043

ABSTRACT

Sequential transfer of information from one enzyme to the next within the confines of a protein kinase scaffold enhances signal transduction. Though frequently considered to be inert organizational elements, two recent reports implicate kinase-scaffolding proteins as active participants in signal relay.


Subject(s)
Axin Protein/metabolism , Cell Cycle Proteins/metabolism , Deoxyribonucleases/metabolism , GTP-Binding Proteins/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Mitosis , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , tRNA Methyltransferases/metabolism , Animals , Humans
19.
Biochem J ; 438(1): 103-10, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21644927

ABSTRACT

Post-translational modification of proteins is a universal form of cellular regulation. Phosphorylation on serine, threonine, tyrosine or histidine residues by protein kinases is the most widespread and versatile form of covalent modification. Resultant changes in activity, localization or stability of phosphoproteins drives cellular events. MS and bioinformatic analyses estimate that ~30% of intracellular proteins are phosphorylated at any given time. Multiple approaches have been developed to systematically define targets of protein kinases; however, it is likely that we have yet to catalogue the full complement of the phosphoproteome. The amino acids that surround a phosphoacceptor site are substrate determinants for protein kinases. For example, basophilic enzymes such as PKA (protein kinase A), protein kinase C and calmodulin-dependent kinases recognize basic side chains preceding the target serine or threonine residues. In the present paper we describe a strategy using peptide arrays and motif-specific antibodies to identify and characterize previously unrecognized substrate sequences for protein kinase A. We found that the protein kinases PKD (protein kinase D) and MARK3 [MAP (microtubule-associated protein)-regulating kinase 3] can both be phosphorylated by PKA. Furthermore, we show that the adapter protein RIL [a product of PDLIM4 (PDZ and LIM domain protein 4)] is a PKA substrate that is phosphorylated on Ser(119) inside cells and that this mode of regulation may control its ability to affect cell growth.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , DNA-Binding Proteins/metabolism , Prostatic Neoplasms/metabolism , Protein Array Analysis , Protein Kinase C/metabolism , Protein Serine-Threonine Kinases/metabolism , Amino Acid Motifs , Amino Acid Sequence , Blotting, Western , Cell Proliferation , Humans , LIM Domain Proteins , Male , Molecular Sequence Data , Phosphorylation , Prostatic Neoplasms/pathology , Protein Processing, Post-Translational , Sequence Homology, Amino Acid , Serine , Substrate Specificity , Threonine , Tumor Cells, Cultured
20.
Cell Cycle ; 10(5): 731-2, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21311231

ABSTRACT

Cancers often arise in part through derangements in protein kinase signaling. A striking example of this is the finding that approximately 30% of human tumors have mutations in Ras or B-Raf, leading to aberrant ERK kinase activation. Kinase signaling networks are often organized by scaffolding and anchoring proteins that help shape the dynamics of signal processing. AKAP-Lbc associates with the ERK scaffold protein KSR-1 to organize a growth factor and cAMP responsive signaling network. AKAP-Lbc also directs PKA phosphorylation of KSR-1 on a critical residue to ensure maximal signaling efficiency.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , A Kinase Anchor Proteins/metabolism , Animals , Humans , Mice , Phosphorylation , Protein Kinases/metabolism , Signal Transduction , ras Proteins/genetics , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL