Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Sci ; 15(25): 9612-9619, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38939126

ABSTRACT

Synthetic methods that enable the macrocyclisation of peptides facilitate the development of effective therapeutic and diagnostic tools. Herein we report a peptide cyclisation strategy based on intramolecular interception of visible-light-mediated cysteine desulfurisation. This method allows cyclisation of unprotected peptides in an aqueous solution via the installation of a hydrocarbon linkage. We explore the limits of this chemistry using a range of model peptides of increasing length and complexity, including peptides of biological/therapeutic relevance. The method is applied to replace the native disulfide of the peptide hormone, oxytocin, with a proteolytically/redox-stable hydrocarbon, and internal macrocyclisation of an MCL-1-binding peptide.

2.
Chemistry ; 29(16): e202202503, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36534955

ABSTRACT

The site-selective modification of peptides and proteins facilitates the preparation of targeted therapeutic agents and tools to interrogate biochemical pathways. Among the numerous bioconjugation techniques developed to install groups of interest, those that generate C(sp3 )-C(sp3 ) bonds are significantly underrepresented despite affording proteolytically stable, biogenic linkages. Herein, a visible-light-mediated reaction is described that enables the site-selective modification of peptides and proteins via desulfurative C(sp3 )-C(sp3 ) bond formation. The reaction is rapid and high yielding in peptide systems, with comparable translation to proteins. Using this chemistry, a range of moieties is installed into model systems and an effective PTM-mimic is successfully integrated into a recombinantly expressed histone.


Subject(s)
Cysteine , Proteins , Cysteine/chemistry , Proteins/chemistry , Peptides/chemistry
3.
Angew Chem Int Ed Engl ; 61(2): e202110223, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34713958

ABSTRACT

Post-translational modifications (PTMs) enhance the repertoire of protein function and mediate or influence the activity of many cellular processes. The preparation of site-specifically and homogeneously modified proteins, to apply as tools to understand the biological role of PTMs, is a challenging task. Herein, we describe a visible-light-mediated desulfurative C(sp3 )-C(sp3 ) bond forming reaction that enables the site-selective installation of Nϵ -modified sidechains into peptides and proteins of interest. Rapid, operationally simple, and tolerant to ambient atmosphere, we demonstrate the installation of a range of lysine (Lys) PTMs into model peptide systems and showcase the potential of this technology by site-selectively installing an Nϵ Ac sidechain into recombinantly expressed ubiquitin (Ub).


Subject(s)
Peptides , Proteins
4.
Chemistry ; 27(55): 13703-13708, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34425034

ABSTRACT

Diazophosphonates, readily prepared from α-ketophosphonates by oxidation of the corresponding hydrazones in batch or in flow, are useful partners in 1,3-dipolar cycloaddition reactions to alkynes to give N-H pyrazoles, including the first intramolecular examples of such a process. The phosphoryl group imbues a number of desirable properties into the diazo 1,3-dipole. The electron-withdrawing nature of the phosphoryl stabilizes the diazo compound making it easier to handle, whilst the ability of the phosphoryl group to migrate readily in a [1,5]-sigmatropic rearrangement enables its transfer from C to N to aromatize the initial cycloadduct, and hence its facile removal from the final pyrazole product. Overall, the diazophosphonate acts as a surrogate for the much less stable diazoalkane in cycloadditions, with the phosphoryl group playing a vital, but traceless, role. The cycloaddition proceeds more readily with alkynes bearing electron-withdrawing groups, and is regiospecific with asymmetrical alkynes. The potential of diazophosphonates for use in bioorthogonal cycloadditions is demonstrated by their facile addition to strained alkynes.


Subject(s)
Alkynes , Pyrazoles , Cycloaddition Reaction , Hydrazones
5.
Angew Chem Int Ed Engl ; 59(52): 23659-23667, 2020 12 21.
Article in English | MEDLINE | ID: mdl-32893423

ABSTRACT

The development of site-selective chemistry targeting the canonical amino acids enables the controlled installation of desired functionalities into native peptides and proteins. Such techniques facilitate the development of polypeptide conjugates to advance therapeutics, diagnostics, and fundamental science. We report a versatile and selective method to functionalize peptides and proteins through free-radical-mediated dechalcogenation. By exploiting phosphine-induced homolysis of the C-Se and C-S bonds of selenocysteine and cysteine, respectively, we demonstrate the site-selective installation of groups appended to a persistent radical trap. The reaction is rapid, operationally simple, and chemoselective. The resulting aminooxy linker is stable under a variety of conditions and selectively cleavable in the presence of a low-oxidation-state transition metal. We have explored the full scope of this reaction using complex peptide systems and a recombinantly expressed protein.

SELECTION OF CITATIONS
SEARCH DETAIL