Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(5): e11306, 2024 May.
Article in English | MEDLINE | ID: mdl-38737567

ABSTRACT

Reproduction, although absolutely essential to a species' persistence, is in itself challenging. As anthropogenic change increasingly affects every landscape on Earth, it is critical to understand how specific pressures impact the reproductive efforts of individuals, which directly contribute to the success or failure of populations. However, organisms rarely encounter a single burden at a time, and the interactions of environmental challenges can have compounding effects. Understanding environmental and physiological pressures is difficult because they are often context-dependent and not generalizable, but long-term monitoring across variable landscapes and weather patterns can improve our understanding of these complex interactions. We tested the effects of urbanization, climate, and individual condition on the reproductive investment of wild side-blotched lizards (Uta stansburiana) by measuring physiological/reproductive metrics from six populations in urban and rural areas over six consecutive years of variable precipitation. We observed that reproductive stage affected body condition, corticosterone concentration, and oxidative stress. We also observed that reproductive patterns differed between urban and rural populations depending on rainfall, with rural animals increasing reproductive investment during rainier years compared to urban conspecifics, and that reproductive decisions appeared to occur early in the reproductive process. These results demonstrate the plastic nature of a generalist species optimizing lifetime fitness under varying conditions.

2.
J Exp Biol ; 226(23)2023 12 01.
Article in English | MEDLINE | ID: mdl-37955054

ABSTRACT

Many environments present some degree of seasonal water limitations; organisms that live in such environments must be adapted to survive periods without permanent water access. Often this involves the ability to tolerate dehydration, which can have adverse physiological effects and is typically considered a physiological stressor. While having many functions, the hormone corticosterone (CORT) is often released in response to stressors, yet increasing plasma CORT while dehydrated could be considered maladaptive, especially for species that experience predictable bouts of dehydration and have related coping mechanisms. Elevating CORT could reduce immunocompetence and have other negative physiological effects. Thus, such species likely have CORT and immune responses adapted to experiencing seasonal droughts. We evaluated how dehydration affects CORT and immune function in eight squamate species that naturally experience varied water limitation. We tested whether hydric state affected plasma CORT concentrations and aspects of immunocompetence (lysis, agglutination, bacterial killing ability and white blood cell counts) differently among species based on how seasonally water limited they are and whether this is constrained by phylogeny. The species represented four familial pairs, with one species of each pair inhabiting environments with frequent access to water and one naturally experiencing extended periods (>30 days) with no access to standing water. The effects of dehydration on CORT and immunity varied among species. Increases in CORT were generally not associated with reduced immunocompetence, indicating CORT and immunity might be decoupled in some species. Interspecies variations in responses to dehydration were more clearly grouped by phylogeny than by habitat type.


Subject(s)
Corticosterone , Dehydration , Animals , Water , Reptiles , Immunity
3.
Gen Comp Endocrinol ; 337: 114258, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36870544

ABSTRACT

Urbanization can cause innumerable abiotic and biotic changes that have the potential to influence the ecology, behavior, and physiology of native resident organisms. Relative to their rural conspecifics, urban Side-blotched Lizard (Uta stansburiana) populations in southern Utah have lower survival prospects and maximize reproductive investment via producing larger eggs and larger clutch sizes. While egg size is an important predictor of offspring quality, physiological factors within the egg yolk are reflective of the maternal environment and can alter offspring traits, especially during energetically costly processes, such as reproduction or immunity. Therefore, maternal effects may represent an adaptive mechanism by which urban-dwelling species can persist within a variable landscape. In this study, we assess urban and rural differences in egg yolk bacterial killing ability (BKA), corticosterone (CORT), oxidative status (d-ROMs), and energy metabolites (free glycerol and triglycerides), and their association with female immune status and egg quality. Within a laboratory setting, we immune challenged urban lizards via lipopolysaccharide injection (LPS) to test whether physiological changes associated with immune system activity impacted egg yolk investment. We found urban females had higher mite loads than rural females, however mite burden was related to yolk BKA in rural eggs, but not urban eggs. While yolk BKA differed between urban and rural sites, egg mass and egg viability (fertilized vs. unfertilized) were strong predictors of yolk physiology and may imply tradeoffs exist between maintenance and reproduction. LPS treatment caused a decrease in egg yolk d-ROMs relative to the control treatments, supporting results from previous research. Finally, urban lizards laid a higher proportion of unfertilized eggs, which differed in egg yolk BKA, CORT, and triglycerides in comparison to fertilized eggs. Because rural lizards laid only viable eggs during this study, these results suggest that reduced egg viability is a potential cost of living in an urban environment. Furthermore, these results help us better understand potential downstream impacts of urbanization on offspring survival, fitness, and overall population health.


Subject(s)
Egg Yolk , Lizards , Animals , Female , Egg Yolk/metabolism , Lizards/metabolism , Lipopolysaccharides , Reproduction/physiology , Zygote
4.
J Exp Biol ; 225(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35448902

ABSTRACT

There is great interspecific variation in the nutritional composition of natural diets, and the varied nutritional content is physiologically tolerated because of evolutionarily based balances between diet composition and processing ability. However, as a result of landscape change and human exposure, unnatural diets are becoming widespread among wildlife without the necessary time for evolutionary matching between the diet and its processing. We tested how a controlled, unnatural high glucose diet affects glucose tolerance using captive green iguanas, and we performed similar glucose tolerance tests on wild Northern Bahamian rock iguanas that are either frequently fed grapes by tourists or experience no such supplementation. We evaluated both short and longer-term blood glucose responses and corticosterone (CORT) concentrations as changes have been associated with altered diets. Experimental glucose supplementation in the laboratory and tourist feeding in the wild both significantly affected glucose metabolism. When iguanas received a glucose-rich diet, we found greater acute increases in blood glucose following a glucose challenge. Relative to unfed iguanas, tourist-fed iguanas had significantly lower baseline CORT, higher baseline blood glucose, and slower returns to baseline glucose levels following a glucose challenge. Therefore, unnatural consumption of high amounts of glucose alters glucose metabolism in laboratory iguanas with short-term glucose treatment and free-living iguanas exposed to long-term feeding by tourists. Based on these results and the increasing prevalence of anthropogenically altered wildlife diets, the consequences of dietary changes on glucose metabolism should be further investigated across species, as such changes in glucose metabolism have health consequences in humans (e.g. diabetes).


Subject(s)
Iguanas , Animals , Animals, Wild , Blood Glucose , Diet/veterinary , Humans
5.
Conserv Physiol ; 8(1): coaa107, 2020.
Article in English | MEDLINE | ID: mdl-33365130

ABSTRACT

Management of stressors requires an understanding of how multiple stressors interact, how different species respond to those interactions and the underlying mechanisms driving observed patterns in species' responses. Salinization and rising temperatures are two pertinent stressors predicted to intensify in freshwater ecosystems, posing concern for how susceptible organisms achieve and maintain homeostasis (i.e. allostasis). Here, glucocorticoid hormones (e.g. cortisol), responsible for mobilizing energy (e.g. glucose) to relevant physiological processes for the duration of stressors, are liable to vary in response to the duration and severity of salinization and temperature rises. With field and laboratory studies, we evaluated how both salinity and temperature influence basal and stress-reactive cortisol and glucose levels in age 1+ mottled sculpin (Cottus bairdii), mountain sucker (Catostomus platyrhynchus) and Colorado River cutthroat trout (Oncorhynchus clarki pleuriticus). We found that temperature generally had the greatest effect on cortisol and glucose concentrations and the effect of salinity was often temperature dependent. We also found that when individuals were chronically exposed to higher salinities, baseline concentrations of cortisol and glucose usually declined as salinity increased. Reductions in baseline concentrations facilitated stronger stress reactivity for cortisol and glucose when exposed to additional stressors, which weakened as temperatures increased. Controlled temperatures near the species' thermal maxima became the overriding factor regulating fish physiology, resulting in inhibitory responses. With projected increases in freshwater salinization and temperatures, efforts to reduce the negative effects of increasing temperatures (i.e. increased refuge habitats and riparian cover) could moderate the inhibitory effects of temperature-dependent effects of salinization for freshwater fishes.

6.
Dis Aquat Organ ; 139: 199-212, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32495746

ABSTRACT

Hyperpigmented melanistic skin lesions (HPMLs) of smallmouth bass Micropterus dolomieu are observed in the Potomac and Susquehanna rivers, Chesapeake Bay watershed, USA. Routine, nonlethal population surveys were conducted at 8 sites on the mainstem Susquehanna River and 9 on the Juniata River, a tributary of the Susquehanna River, between 2012 and 2018, and the prevalence of HPMLs was documented. A total of 4078 smallmouth bass were collected from the mainstem Susquehanna River and 6478 from the Juniata River. Lesions were primarily seen in bass greater than 200 mm, and prevalence in the Susquehanna River (8%) was higher (p < 0.001) than in the Juniata River (2%). As part of ongoing fish health monitoring projects, smallmouth bass were collected at additional sites, primarily tributaries of the Susquehanna (n = 758) and Potomac (n = 545) rivers between 2013 and 2018. Prevalence in the Susquehanna River (13%) was higher (p < 0.001) than the Potomac (3%). Microscopically, HPMLs were characterized by an increased number of melanocytes in the epidermis or within the dermis and epidermis. RNAseq analyses of normal and melanistic skin identified 3 unique sequences in HPMLs. Two were unidentified and the third was a viral helicase (E1). Transcript abundance in 16 normal skin samples and 16 HPMLs showed upregulation of genes associated with melanogenesis and cell proliferation in HPMLs. The E1 transcript was detected in 12 of the 16 melanistic areas but in no samples from normal skin. Further research will be necessary to identify the putative new virus and determine its role in melanocyte proliferation.


Subject(s)
Bass , Animals , Bays , Rivers
7.
Microbiol Resour Announc ; 9(14)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32241864

ABSTRACT

Raised mucoid skin lesions have been observed on smallmouth bass (Micropterus dolomieu) for years. Here, we report the draft genome of a novel adomavirus (Micropterus dolomieu adomavirus 2) associated with this disease. The circular genome is 17,561 bp and most similar to that of alpha-adomaviruses.

8.
Conserv Physiol ; 8(1): coaa001, 2020.
Article in English | MEDLINE | ID: mdl-32082575

ABSTRACT

Spatial and temporal variation in stoichiometric and stable isotope ratios of animals contains ecological information that we are just beginning to understand. In both field and lab studies, stoichiometric or isotopic ratios are related to physiological mechanisms underlying nutrition or stress. Conservation and ecosystem ecology may be informed by isotopic data that can be rapidly and non-lethally collected from wild animals, especially where human activity leaves an isotopic signature (e.g. via introduction of chemical fertilizers, ornamental or other non-native plants or organic detritus). We examined spatial and temporal variation in stoichiometric and stable isotope ratios of the toes of Uta stansburiana (side-blotched lizards) living in urban and rural areas in and around St. George, Utah. We found substantial spatial and temporal variation as well as context-dependent co-variation with reproductive physiological parameters, although certain key predictions such as the relationship between δ15N and body condition were not supported. We suggest that landscape change through urbanization can have profound effects on wild animal physiology and that stoichiometric and stable isotope ratios can provide unique insights into the mechanisms underlying these processes.

9.
Proc Natl Acad Sci U S A ; 117(10): 5196-5203, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32098848

ABSTRACT

Black carbon (BC) absorbs solar radiation, leading to a strong but uncertain warming effect on climate. A key challenge in modeling and quantifying BC's radiative effect on climate is predicting enhancements in light absorption that result from internal mixing between BC and other aerosol components. Modeling and laboratory studies show that BC, when mixed with other aerosol components, absorbs more strongly than pure, uncoated BC; however, some ambient observations suggest more variable and weaker absorption enhancement. We show that the lower-than-expected enhancements in ambient measurements result from a combination of two factors. First, the often used spherical, concentric core-shell approximation generally overestimates the absorption by BC. Second, and more importantly, inadequate consideration of heterogeneity in particle-to-particle composition engenders substantial overestimation in absorption by the total particle population, with greater heterogeneity associated with larger model-measurement differences. We show that accounting for these two effects-variability in per-particle composition and deviations from the core-shell approximation-reconciles absorption enhancement predictions with laboratory and field observations and resolves the apparent discrepancy. Furthermore, our consistent model framework provides a path forward for improving predictions of BC's radiative effect on climate.

10.
J Exp Zool A Ecol Integr Physiol ; 333(10): 744-755, 2020 12.
Article in English | MEDLINE | ID: mdl-33450143

ABSTRACT

While there is huge promise in monitoring physiological parameters in free-living organisms, we also find high amounts of variability over time and space. This variation requires us to capitalize on long-term physiological monitoring to adequately address questions of population health, conservation status, or evolutionary trends as long-term sampling can examine ecoimmunological and endocrine interactions in wild populations while accounting for the variation that often makes ecophysiological field studies difficult to compare. In this study, we tested how immune efficacy and endocrinology interact while accounting for ecological context and environmental conditions in two snake species. Specifically, we measured bacterial killing ability, steroid hormones, and morphological characteristics in multiple populations of the Western Terrestrial Gartersnake (Thamnophis elegans) and Common Gartersnake (T. sirtalis) for multiple seasons over 6 years. Leveraging this long-term dataset, we tested how a broad immune measure and endocrine endpoints interact while accounting for individual traits, sampling date, and environmental conditions. Across both species, we found bacterial killing ability to be directly related to corticosterone (CORT) and temperature and greater overall in the spring compared to the fall. We found CORT and testosterone yielded relationships with individual sex, sampling temperature, and time of year. Wild populations can exhibit high amounts of variation in commonly collected physiological endpoints, highlighting the complexity and difficulty inherent in interpreting single endpoints without taking ecological and environmental conditions into account. Our study emphasizes the importance of reporting the environmental conditions under which the sampling occurred to allow for better contextualization and comparison between studies.


Subject(s)
Colubridae/physiology , Animals , Blood Bactericidal Activity , Body Temperature , Colubridae/blood , Colubridae/immunology , Corticosterone/blood , Environment , Female , Male , Seasons , Sex Factors , Testosterone/blood
11.
Ecol Evol ; 9(10): 5743-5751, 2019 May.
Article in English | MEDLINE | ID: mdl-31160995

ABSTRACT

Life-history strategies are known to shift with latitude in many species. While life-history variation related to body size, reproductive investment, and behavior has been studied for years, another crucial life-history component is the immune system, which can influence an animal's survival.We measured selected life-history traits in side-blotched lizards in southern Utah and Oregon in the field for two consecutive years and conducted a common-garden experiment in the laboratory to determine how organisms from different latitudes optimize either immunity or reproduction. We observed lizards from southern populations, which are known to be shorter-lived, had lower immune function during reproduction when compared to northern lizards in 2012, but the relationship reversed in the following year.Our laboratory study revealed that southern lizards healed cutaneous wounds faster and had higher microbiocidal ability when compared to their northern counterparts, but lost mass doing so. The northern lizards ate more than the southern ones and maintained their body mass. It is possible that northern lizards are better adapted to taking advantage of available food resources. Alternatively, southern lizards may have exhibited sickness behavior in response to an immune challenge or reacted more strongly to the stress of captivity.We found differences in life-history strategies used by animals from different latitudes, and that these changes can shift within a population depending on the weather conditions of the year. Furthermore, when taken from the field and placed into a common-garden environment, some of these differences in strategy appear to be intrinsic to the animals (i.e., whether they came from southern or northern populations).

12.
J Fish Dis ; 41(11): 1689-1700, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30117566

ABSTRACT

A myxozoan parasite, Myxobolus inornatus, is one disease agent identified in young of the year (YOY) smallmouth bass in the Susquehanna River Basin, Pennsylvania. We investigated spatial and temporal variability in M. Inornatus prevalence across the Susquehanna River Basin and at several out-of-basin sites. We examined potential land use drivers of M. Inornatus prevalence including agricultural and developed land use. In 1,267 YOY smallmouth bass collected from 32 sites during 2013-2016, M. Inornatus was documented in 43.6% of samples. Among-site variability in parasite prevalence was greater than among-year variability. The effect of agricultural land use on M. Inornatus prevalence had a high probability of being positively correlated at multiple spatial scales (probability of positive effect > 0.80). The effect of developed land use on M. Inornatus prevalence had a relatively high probability of being negatively correlated at multiple spatial scales (probability of negative effect > 0.70). Our results suggest that land use practices could be related to M. Inornatus infection of smallmouth bass. Further study will be necessary to determine whether disease dynamics are a consequence of effects on the host, alterations of instream habitat mediating invertebrate host dynamics and/or survival and dispersal of the parasite infective stage.


Subject(s)
Bass , Fish Diseases/epidemiology , Myxobolus/physiology , Parasitic Diseases, Animal/epidemiology , Animals , Fish Diseases/parasitology , Parasitic Diseases, Animal/parasitology , Pennsylvania/epidemiology , Prevalence , Seasons , Spatial Analysis
13.
J Therm Biol ; 73: 8-13, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29549994

ABSTRACT

Behavioral fever in reptiles is often considered an adaptive response used to eliminate pathogens, yet empirical data showing the wide-spread use of this response is mixed. This behavioral change can be beneficial by enhancing the host's immune response and increasing the animal's chance of survival, but it can also be detrimental in terms of host energetic requirements and enzymatic performance. Thus, we examined whether captive-bred African house snakes (Lamprophis fuliginosus) employed behavioral fever in response to pathogen stimulus. Twenty-one African house snakes were injected separately with three different strains of ultraviolet (UV) light-killed bacteria (Escherichia coli, Staphylococcus aureus, Salmonella enterica). We found an increased variance of hourly cloacal temperatures following exposure to pathogens in male but not female house snakes. We did not, however, find a significant febrile response to pathogen exposure as measured via mean cloacal temperature. This research adds critical information to the field of reptilian physiology as this field remains understudied. Reptilian immune function and its relationship with thermal biology is ever more pertinent as new challenges arise, such as novel pathogens and changing climate.


Subject(s)
Bacterial Infections/physiopathology , Body Temperature Regulation , Sex Characteristics , Snakes/physiology , Animals , Cloaca/physiopathology , Escherichia coli/pathogenicity , Escherichia coli Infections/physiopathology , Female , Male , Salmonella Infections/physiopathology , Salmonella enterica/pathogenicity , Staphylococcal Infections/physiopathology , Staphylococcus aureus/pathogenicity
14.
BMC Vet Res ; 14(1): 62, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29499725

ABSTRACT

BACKGROUND: Mortality episodes have affected young-of-year smallmouth bass (Micropterus dolomieu) in several river systems in Pennsylvania since 2005. A series of laboratory experiments were performed to determine the potential role of largemouth bass virus (Ranavirus, Iridoviridae) in causing these events. RESULTS: Juvenile smallmouth bass experimentally infected with the largemouth bass virus exhibited internal and external clinical signs and mortality consistent with those observed during die-offs. Microscopically, infected fish developed multifocal necrosis in the mesenteric fat, liver, spleen and kidneys. Fish challenged by immersion also developed severe ulcerative dermatitis and necrotizing myositis and rarely panuveitis and keratitis. Largemouth bass virus-challenged smallmouth bass experienced greater mortality at 28 °C than at 23 or 11 °C. Co-infection with Flavobacterium columnare at 28 °C resulted in significant increase in mortality of smallmouth bass previously infected with largemouth bass virus. Aeromonas salmonicida seems to be very pathogenic to fish at water temperatures < 23 °C. While co-infection of smallmouth bass by both A. salmonicida and largemouth bass virus can be devastating to juvenile smallmouth bass, the optimal temperatures of each pathogen are 7-10 °C apart, making their synergistic effects highly unlikely under field conditions. CONCLUSIONS: The sum of our data generated in this study suggests that largemouth bass virus can be the causative agent of young-of-year smallmouth bass mortality episodes observed at relatively high water temperature.


Subject(s)
Bass/virology , DNA Virus Infections/veterinary , Fish Diseases/mortality , Iridoviridae , Animals , DNA Virus Infections/mortality , DNA Virus Infections/virology , Fish Diseases/virology , Pennsylvania/epidemiology , Rivers/virology
15.
J Aquat Anim Health ; 30(1): 65-80, 2018 03.
Article in English | MEDLINE | ID: mdl-29595890

ABSTRACT

Evidence of disease and mortalities of young of the year (age-0) Smallmouth Bass Micropterus dolomieu has occurred during the late spring and summer in many parts of the Susquehanna River watershed since 2005. To better understand contributing factors, fish collected from multiple areas throughout the watershed as well as out-of-basin reference populations (Allegheny and Delaware River basins; experimental ponds, Kearneysville, West Virginia) were examined grossly and histologically for abnormalities. Tissue contaminant concentrations were determined from whole-body homogenates, and water contaminant concentrations were estimated using time-integrated passive samplers at selected sites. Observed or isolated pathogens included bacteria, predominantly motile Aeromonas spp. and Flavobacterium columnare; largemouth bass virus, and parasites, including trematode metacercariae, cestodes, and the myxozoan Myxobolus inornatus. Although these pathogens were found in age-0 Smallmouth Bass from multiple sites, no one pathogen was consistently associated with mortality. Chemicals detected in tissue included polychlorinated biphenyl (PCB) congeners, organochlorine, and current-use pesticides. Pyraclostrobin, PCB congeners 170 and 187, cis-chlordane and trans-nonachlor were detected in all Susquehanna watershed samples but rarely in samples from the reference site. The findings support the idea that there is no single cause for disease of age-0 Smallmouth Bass; rather the cumulative effects of co-infections and potential immunomodulation by environmental stressors during a sensitive developmental life stage may lead to mortality. Identifying the most important risk factors will be necessary for more in-depth analyses of individual stressors and better management of the habitat and fish populations.


Subject(s)
Bass , Fish Diseases/epidemiology , Water Pollutants, Chemical/analysis , Animals , Bacteria/isolation & purification , Coinfection , Fish Diseases/microbiology , Fish Diseases/parasitology , Fish Diseases/virology , Parasites/isolation & purification , Pennsylvania/epidemiology , Risk Factors , Rivers/chemistry , Seasons , Viruses/isolation & purification , Water Pollutants, Chemical/adverse effects
16.
Integr Comp Biol ; 57(2): 344-351, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28859420

ABSTRACT

SYNOPSIS: The immune system is a critical component of health and fitness, whereby organisms must maintain sufficient health to survive to reproduce. Because of the key role of immunity in an organism's fitness, the use of immunological indices is widespread. However, there is a paucity of empirical support for the best way to interpret immunological data, and the internal energetic state of the organism, as well as the external environmental pressures it faces, are often not considered concurrently. A stronger immune response is not always beneficial to the organism; a more attenuated response may ultimately lead to improved fitness if the animal incurs fewer performance costs on competing systems, especially reproduction. Additionally, the external pressures animals encounter (such as anthropogenic disturbance) must be considered along with the animal's internal state. A synthesis of results addressing resource allocation between the immune and reproductive systems is presented using a well-studied organism, the side-blotched lizard, from a combination of field and laboratory studies under varying environmental conditions. Specifically, experiments involving specific immune, reproductive, metabolic, and performance costs in a laboratory setting are discussed, as well as associated demographic trade-offs between survival and reproductive success, demonstrating essential links between immunity and the population.


Subject(s)
Energy Metabolism/physiology , Immunity/physiology , Lizards/physiology , Animals , Environment , Lizards/immunology , Lizards/metabolism , Reproduction/physiology
17.
Environ Sci Technol ; 51(12): 6782-6790, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28548841

ABSTRACT

Light-absorbing organic material, or "brown carbon" (BrC), can significantly influence the effect that aerosols have on climate. Here, we investigate how changing pH affects the absorption spectra of water-soluble BrC from ambient particulate matter smaller than 2.5 µm collected in Athens, Georgia, in the spring and fall of 2016, including samples from nearby wildfires. We find that absorption increases 10% per pH unit from pH 2 to pH 12 with a broad, featureless tail at visible wavelengths, where the largest fractional increase is also observed. The resulting change in the spectral shape causes the absorption Ångström exponent to decrease by 0.18 per unit increase in pH. Similar behavior with humic substances suggests that they and BrC share a common link between pH and absorption, which we propose could be a consequence of conformational changes in supramolecular assemblies thought to exist in humic substances. Specifically, we hypothesize that a wider variety and larger number of absorbing charge transfer complexes are formed as functional groups in these molecules, such as carboxylic acid and phenol moieties, become deprotonated. These findings suggest that (1) the pH of ambient particulate matter samples should be measured or controlled and (2) radiative forcing by BrC aerosols could be overestimated if their pH-dependent BrC absorption is not accounted for in models.


Subject(s)
Aerosols , Carbon/chemistry , Georgia , Hydrogen-Ion Concentration , Light , Particulate Matter , Southeastern United States
18.
J Comp Physiol B ; 187(8): 1173-1182, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28405747

ABSTRACT

The energetic cost of immunity depends on many factors, including the type of challenge, the timing of the response, and the state of the animal. We measured changes in the standard metabolic rates of side-blotched lizards (Uta stansburiana Baird and Girard, 1852) in response to different immune challenges and nutritional states. In the first experiment, lizards were randomly assigned to one of four treatments: lipopolysaccharide (LPS) injection (to stimulate the response to a pathogen), cutaneous biopsy (as a proxy to a superficial wound), both injection and biopsy, or neither (control). Four and five days later, we measured the standard metabolic rates of the lizards. In response to healing a cutaneous wound, lizards reduced metabolic rate and lost body mass. Healing rate was also inversely related to weight loss, but LPS had no effect on body mass or metabolic rate. In the second experiment, a new set of lizards were randomly assigned to a high-food or low-food diet and administered a cutaneous biopsy. As in the first experiment, we observed a reduction in metabolic rate after wounding; moreover, this decrease was positively correlated with the rate of healing. We observed higher rates of metabolism in lizards that ate more food, but food consumption was unrelated to the decrease in metabolic rate following the biopsy. These experiments demonstrate the dynamic nature of the immune response in response to immune challenge and the state of the organism.


Subject(s)
Caloric Restriction , Lipopolysaccharides/pharmacology , Lizards , Nutritional Status , Wound Healing , Animals , Basal Metabolism , Corticosterone/blood , Hemagglutination , Hemolysis , Lizards/immunology , Lizards/metabolism , Male , Nutritional Status/immunology , Nutritional Status/physiology , Skin/injuries
19.
Physiol Biochem Zool ; 90(3): 321-327, 2017.
Article in English | MEDLINE | ID: mdl-28384422

ABSTRACT

We investigated the presence of ectoparasites and hemoparasites in side-blotched lizards (Uta stansburiana) across a large part of their range and measured how parasitic infection related to several key physiological indicators of health. Blood samples were collected from 132 lizards from central Arizona, southern Utah, and eastern Oregon. Hemoparasites were found in 22 individuals (3.2% prevalence in Arizona, 19.1% in Utah, and 6.3% in Oregon), and ectoparasites were found on 51 individuals (56.3% prevalence in Arizona, 56.1% in Utah, and 6.7% in Oregon), with 11 individuals infected with both. Hemoparasites and ectoparasites were found in all three states. Immunocompetence was higher in individuals infected with both hemoparasites and ectoparasites. Body condition, glucocorticoid levels, and reproductive investment were not related to infection status. Our study provides evidence that parasitic infection is associated with an active immune system in wild reptiles but may not impose other costs usually associated with parasites.


Subject(s)
Lizards/parasitology , Parasitic Diseases, Animal/metabolism , Animals , Parasitic Diseases, Animal/epidemiology , Parasitic Diseases, Animal/parasitology , United States/epidemiology
20.
J Exp Zool A Ecol Integr Physiol ; 327(5): 333-346, 2017 06.
Article in English | MEDLINE | ID: mdl-29356384

ABSTRACT

Assessing the health and condition of animals in their natural environment can be problematic. Many physiological metrics, including immunity, are highly influenced by specific context and recent events to which researchers may be unaware. Thus, using a multifaceted physiological approach and a context-specific analysis encompassing multiple time scales can be highly informative. Ecoimmunological tools in particular can provide important indications to the health of animals in the wild. We collected blood and hair samples from free-ranging polar bears (Ursus maritimus) in the southern Beaufort Sea and examined the influence of sex, age, and reproductive status on metrics of immunity, stress, and body condition during 2013-2015. We examined metrics of innate immunity (bactericidal ability and lysis) and stress (hair cortisol, reactive oxygen species, and oxidative barrier), in relation to indices of body condition considered to be short term (urea to creatinine ratio; UC ratio) and long term (storage energy and body mass index). We found the factors of sex, age, and reproductive status of the bear were critical for interpreting different physiological metrics. Additionally, the metrics of body condition were important predictors for stress indicators. Finally, many of these metrics differed between years, illustrating the need to examine populations on a longer time scale. Taken together, this study demonstrates the complex relationship between multiple facets of physiology and how interpretation requires us to examine individuals within a specific context.


Subject(s)
Ursidae/immunology , Age Factors , Animals , Arctic Regions , Body Mass Index , Female , Hair/chemistry , Hydrocortisone/analysis , Immunity, Innate/immunology , Male , Reactive Oxygen Species/blood , Serum Bactericidal Test/veterinary , Sex Factors , Stress, Physiological/immunology , Ursidae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...