Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Ann N Y Acad Sci ; 1534(1): 145-155, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520387

ABSTRACT

Cardiorespiratory performance segregates into rat strains of inherited low- and high-capacity runners (LCRs and HCRs); during adulthood, this segregation remains stable, but widens in senescence and is followed by segregated function, health, and mortality. However, this segregation has not been investigated prior to adulthood. We, therefore, assessed cardiorespiratory performance and cardiac cell (cardiomyocyte) structure-function in 1- and 4-month-old LCRs and HCRs. Maximal oxygen uptake was 23% less in LCRs at 1-month compared to HCRs at 1-month, and 72% less at 4 months. Cardiomyocyte contractility was 37-56% decreased, and Ca2+ release was 34-62% decreased, in 1- and 4-month LCRs versus HCRs. This occurred because HCRs had improved contractility and Ca2+ release during maturation, whereas LCRs did not. In quiescent cardiomyocytes, LCRs displayed 180% and 297% more Ca2+ sparks and 91% and 38% more Ca2+ waves at 1 and 4 months versus HCRs. Cell sizes were not different between LCRs and HCRs, but LCRs showed reduced transverse-tubules versus HCRs, though no discrepant transverse-tubule generation occurred during maturation. In conclusion, LCRs show reduced scores for aerobic capacity and cardiomyocyte structure-function compared to HCRs and there is a widening divergence between LCRs and HCRs during juvenile to near-adult maturation.


Subject(s)
Heart , Myocytes, Cardiac , Rats , Animals
2.
Am J Physiol Heart Circ Physiol ; 326(1): H203-H215, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37975708

ABSTRACT

Ventricular arrhythmias contribute significantly to cardiovascular mortality, with coronary artery disease as the predominant underlying cause. Understanding the mechanisms of arrhythmogenesis is essential to identify proarrhythmic factors and develop novel approaches for antiarrhythmic prophylaxis and treatment. Animal models are vital in basic research on cardiac arrhythmias, encompassing molecular, cellular, ex vivo whole heart, and in vivo models. Most studies use either in vivo protocols lacking important information on clinical relevance or exclusively ex vivo protocols, thereby missing the opportunity to explore underlying mechanisms. Consequently, interpretation may be difficult due to dissimilarities in animal models, interventions, and individual properties across animals. Moreover, proarrhythmic effects observed in vivo are often not replicated in corresponding ex vivo preparations during mechanistic studies. We have established a protocol to perform both an in vivo and ex vivo electrophysiological characterization in an arrhythmogenic rat model with heart failure following myocardial infarction. The same animal is followed throughout the experiment. In vivo methods involve intracardiac programmed electrical stimulation and external defibrillation to terminate sustained ventricular arrhythmia. Ex vivo methods conducted on the Langendorff-perfused heart include an electrophysiological study with optical mapping of regional action potentials, conduction velocities, and dispersion of electrophysiological properties. By exploring the retention of the in vivo proarrhythmic phenotype ex vivo, we aim to examine whether the subsequent ex vivo detailed measurements are relevant to in vivo pathological behavior. This protocol can enhance greater understanding of cardiac arrhythmias by providing a standardized, yet adaptable model for evaluating arrhythmogenicity or antiarrhythmic interventions in cardiac diseases.NEW & NOTEWORTHY Rodent models are widely used in arrhythmia research. However, most studies do not standardize clinically relevant in vivo and ex vivo techniques to support their conclusions. Here, we present a comprehensive electrophysiological protocol in an arrhythmogenic rat model, connecting in vivo and ex vivo programmed electrical stimulation with optical mapping. By establishing this protocol, we aim to facilitate the adoption of a standardized model for investigating arrhythmias, enhancing research rigor and comparability in this field.


Subject(s)
Arrhythmias, Cardiac , Myocardial Infarction , Rats , Animals , Heart/physiology , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Models, Animal
3.
Cell Biochem Funct ; 41(8): 1147-1161, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37665041

ABSTRACT

Cardiac cellular responses to acute exercise remain undescribed. We present a model for mimicking acute aerobic endurance exercise to freshly isolated cardiomyocytes by evoking exercise-like contractions over prolonged periods of time with trains of electrical twitch stimulations. We then investigated immediate contractile, Ca2+ , and metabolic responses to acute exercise in perfused freshly isolated left ventricular rat cardiomyocytes, after a matrix-design optimized protocol and induced a mimic for acute aerobic endurance exercise by trains of prolonged field twitch stimulations. Acute exercise decreased cardiomyocyte fractional shortening 50%-80% (p < .01). This was not explained by changes to intracellular Ca2+ handling (p > .05); rather, we observed a weak insignificant Ca2+ transient increase (p = .11), while myofilament Ca2+ sensitivity increased 20%-70% (p < .05). Acidic pH 6.8 decreased fractional shortening 20%-70% (p < .05) because of 20%-30% decreased Ca2+ transients (p < .05), but no difference occurred between control and acute exercise (p > .05). Addition of 1 or 10 mM La- increased fractional shortening in control (1 mM La- : no difference, p > .05; 10 mM La- : 20%-30%, p < .05) and acute exercise (1 mM La- : 40%-90%, p < .01; 10 mM La- : 50%-100%, p < .01) and rendered acute exercise indifferent from control (p > .05). Intrinsic autofluorescence showed a resting NADstate of 0.59 ± 0.04 and FADstate of 0.17 ± 0.03, while acute exercise decreased NADH/FAD ratio 8% (p < .01), indicating intracellular oxidation. In conclusion, we show a novel approach for studying immediate acute cardiomyocyte responses to aerobic endurance exercise. We find that acute exercise in cardiomyocytes decreases contraction, but Ca2+ handling and myofilament Ca2+ sensitivity compensate for this, while acidosis and reduced energy substrate and mitochondrial ATP generation explain this.


Subject(s)
Calcium , Myofibrils , Rats , Animals , Myofibrils/metabolism , Calcium/metabolism , Myocardial Contraction/physiology , Myocytes, Cardiac/metabolism , Exercise
4.
J Mol Cell Cardiol ; 183: 70-80, 2023 10.
Article in English | MEDLINE | ID: mdl-37704101

ABSTRACT

BACKGROUND: The small conductance Ca2+-activated K+ current (ISK) is a potential therapeutic target for treating atrial fibrillation. AIM: To clarify, in rabbit and human atrial cardiomyocytes, the intracellular [Ca2+]-sensitivity of ISK, and its contribution to action potential (AP) repolarisation, under physiological conditions. METHODS: Whole-cell-patch clamp, fluorescence microscopy: to record ion currents, APs and [Ca2+]i; 35-37°C. RESULTS: In rabbit atrial myocytes, 0.5 mM Ba2+ (positive control) significantly decreased whole-cell current, from -12.8 to -4.9 pA/pF (P < 0.05, n = 17 cells, 8 rabbits). By contrast, the ISK blocker apamin (100 nM) had no effect on whole-cell current, at any set [Ca2+]i (∼100-450 nM). The ISK blocker ICAGEN (1 µM: ≥2 x IC50) also had no effect on current over this [Ca2+]i range. In human atrial myocytes, neither 1 µM ICAGEN (at [Ca2+]i âˆ¼ 100-450 nM), nor 100 nM apamin ([Ca2+]i âˆ¼ 250 nM) affected whole-cell current (5-10 cells, 3-5 patients/group). APs were significantly prolonged (at APD30 and APD70) by 2 mM 4-aminopyridine (positive control) in rabbit atrial myocytes, but 1 µM ICAGEN had no effect on APDs, versus either pre-ICAGEN or time-matched controls. High concentration (10 µM) ICAGEN (potentially ISK-non-selective) moderately increased APD70 and APD90, by 5 and 26 ms, respectively. In human atrial myocytes, 1 µM ICAGEN had no effect on APD30-90, whether stimulated at 1, 2 or 3 Hz (6-9 cells, 2-4 patients/rate). CONCLUSION: ISK does not flow in human or rabbit atrial cardiomyocytes with [Ca2+]i set within the global average diastolic-systolic range, nor during APs stimulated at physiological or supra-physiological (≤3 Hz) rates.


Subject(s)
Atrial Fibrillation , Myocytes, Cardiac , Animals , Humans , Rabbits , Myocytes, Cardiac/drug effects , Apamin/pharmacology , Small-Conductance Calcium-Activated Potassium Channels , Heart Atria/drug effects , Action Potentials/drug effects
5.
Proc Natl Acad Sci U S A ; 120(7): e2207887120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745790

ABSTRACT

Mammalian voltage-activated L-type Ca2+ channels, such as Ca(v)1.2, control transmembrane Ca2+ fluxes in numerous excitable tissues. Here, we report that the pore-forming α1C subunit of Ca(v)1.2 is reversibly palmitoylated in rat, rabbit, and human ventricular myocytes. We map the palmitoylation sites to two regions of the channel: The N terminus and the linker between domains I and II. Whole-cell voltage clamping revealed a rightward shift of the Ca(v)1.2 current-voltage relationship when α1C was not palmitoylated. To examine function, we expressed dihydropyridine-resistant α1C in human induced pluripotent stem cell-derived cardiomyocytes and measured Ca2+ transients in the presence of nifedipine to block the endogenous channels. The transients generated by unpalmitoylatable channels displayed a similar activation time course but significantly reduced amplitude compared to those generated by wild-type channels. We thus conclude that palmitoylation controls the voltage sensitivity of Ca(v)1.2. Given that the identified Ca(v)1.2 palmitoylation sites are also conserved in most Ca(v)1 isoforms, we propose that palmitoylation of the pore-forming α1C subunit provides a means to regulate the voltage sensitivity of voltage-activated Ca2+ channels in excitable cells.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Rats , Humans , Rabbits , Animals , Myocytes, Cardiac/metabolism , Calcium/metabolism , Lipoylation , Calcium Channels, L-Type/metabolism , Induced Pluripotent Stem Cells/metabolism , Calcium, Dietary , Mammals/metabolism
6.
Math Med Biol ; 40(2): 175-198, 2023 06 14.
Article in English | MEDLINE | ID: mdl-36689769

ABSTRACT

Current understanding of arrhythmia mechanisms and design of anti-arrhythmic drug therapies hinges on the assumption that myocytes from the same region of a single heart have similar, if not identical, action potential waveforms and drug responses. On the contrary, recent experiments reveal significant heterogeneity in uncoupled healthy myocytes both from different hearts as well as from identical regions within a single heart. In this work, a methodology is developed for quantifying the individual electrophysiological properties of large numbers of uncoupled cardiomyocytes under ion channel block in terms of the parameters values of a conceptual fast-slow model of electrical excitability. The approach is applied to a population of nearly 500 rabbit ventricular myocytes for which action potential duration (APD) before and after the application of the drug nifedipine was experimentally measured (Lachaud et al., 2022, Cardiovasc. Res.). To this end, drug action is represented by a multiplicative factor to an effective ion conductance, a closed form asymptotic expression for APD is derived and inverted to determine model parameters as functions of APD and $\varDelta $APD (drug-induced change in APD) for each myocyte. Two free protocol-related quantities are calibrated to experiment using an adaptive-domain procedure based on an original assumption of optimal excitability. The explicit APD expression and the resulting set of model parameter values allow (a) direct evaluation of conditions necessary to maintain fixed APD or $\varDelta $APD, (b) predictions of the proportion of cells remaining excitable after drug application, (c) predictions of stimulus period dependency and (d) predictions of dose-response curves, the latter being in agreement with additional experimental data.


Subject(s)
Arrhythmias, Cardiac , Myocytes, Cardiac , Animals , Rabbits , Myocytes, Cardiac/physiology , Arrhythmias, Cardiac/drug therapy , Action Potentials/physiology , Ion Channels , Electrophysiological Phenomena , Heart Ventricles
7.
Cardiovasc Res ; 119(2): 465-476, 2023 03 31.
Article in English | MEDLINE | ID: mdl-35727943

ABSTRACT

AIMS: Long QT syndrome (LQTS) carries a risk of life-threatening polymorphic ventricular tachycardia (Torsades de Pointes, TdP) and is a major cause of premature sudden cardiac death. TdP is induced by R-on-T premature ventricular complexes (PVCs), thought to be generated by cellular early-afterdepolarisations (EADs). However, EADs in tissue require cellular synchronisation, and their role in TdP induction remains unclear. We aimed to determine the mechanism of TdP induction in rabbit hearts with acquired LQTS (aLQTS). METHODS AND RESULTS: Optical mapping of action potentials (APs) and intracellular Ca2+ was performed in Langendorff-perfused rabbit hearts (n = 17). TdP induced by R-on-T PVCs was observed during aLQTS (50% K+/Mg++ & E4031) conditions in all hearts (P < 0.0001 vs. control). Islands of AP prolongation bounded by steep voltage gradients (VGs) were consistently observed before arrhythmia and peak VGs were more closely related to the PVC upstroke than EADs, both temporally (7 ± 5 ms vs. 44 ± 27 ms, P < 0.0001) and spatially (1.0 ± 0.7 vs. 3.6 ± 0.9 mm, P < 0.0001). PVCs were initiated at estimated voltages of ∼ -40 mV and had upstroke dF/dtmax and Vm-Ca2+ dynamics compatible with ICaL activation. Computational simulations demonstrated that PVCs could arise directly from VGs, through electrotonic triggering of ICaL. In experiments and the model, sub-maximal L-type Ca2+ channel (LTCC) block (200 nM nifedipine and 90% gCaL, respectively) abolished both PVCs and TdP in the continued presence of aLQTS. CONCLUSION: These data demonstrate that ICaL activation at sites displaying steep VGs generates the PVCs which induce TdP, providing a mechanism and rationale for LTCC blockers as a novel therapeutic approach in LQTS.


Subject(s)
Long QT Syndrome , Torsades de Pointes , Ventricular Premature Complexes , Animals , Rabbits , Calcium , Torsades de Pointes/chemically induced , Action Potentials , DNA-Binding Proteins , Electrocardiography
9.
Front Physiol ; 13: 1023237, 2022.
Article in English | MEDLINE | ID: mdl-36277202

ABSTRACT

S-palmitoylation is an essential lipid modification catalysed by zDHHC-palmitoyl acyltransferases that regulates the localisation and activity of substrates in every class of protein and tissue investigated to date. In the heart, S-palmitoylation regulates sodium-calcium exchanger (NCX1) inactivation, phospholemman (PLM) inhibition of the Na+/K+ ATPase, Nav1.5 influence on membrane excitability and membrane localisation of heterotrimeric G-proteins. The cell surface localised enzyme zDHHC5 palmitoylates NCX1 and PLM and is implicated in injury during anoxia/reperfusion. Little is known about how palmitoylation remodels in cardiac diseases. We investigated expression of zDHHC5 in animal models of left ventricular hypertrophy (LVH) and heart failure (HF), along with HF tissue from humans. zDHHC5 expression increased rapidly during onset of LVH, whilst HF was associated with decreased zDHHC5 expression. Paradoxically, palmitoylation of the zDHHC5 substrate NCX1 was significantly reduced in LVH but increased in human HF, while palmitoylation of the zDHHC5 substrate PLM was unchanged in all settings. Overexpression of zDHHC5 in rabbit ventricular cardiomyocytes did not alter palmitoylation of its substrates or overall cardiomyocyte contractility, suggesting changes in zDHHC5 expression in disease may not be a primary driver of pathology. zDHHC5 itself is regulated by post-translational modifications, including palmitoylation in its C-terminal tail. We found that in HF palmitoylation of zDHHC5 changed in the same manner as palmitoylation of NCX1, suggesting additional regulatory mechanisms may be involved. This study provides novel evidence that palmitoylation of cardiac substrates is altered in the setting of HF, and that expression of zDHHC5 is dysregulated in both hypertrophy and HF.

10.
Pflugers Arch ; 474(12): 1311-1321, 2022 12.
Article in English | MEDLINE | ID: mdl-36131146

ABSTRACT

Atrial fibrillation (AF) from elevated adrenergic activity may involve increased atrial L-type Ca2+ current (ICaL) by noradrenaline (NA). However, the contribution of the adrenoceptor (AR) sub-types to such ICaL-increase is poorly understood, particularly in human. We therefore investigated effects of various broad-action and sub-type-specific α- and ß-AR antagonists on NA-stimulated atrial ICaL. ICaL was recorded by whole-cell-patch clamp at 37 °C in myocytes isolated enzymatically from atrial tissues from consenting patients undergoing elective cardiac surgery and from rabbits. NA markedly increased human atrial ICaL, maximally by ~ 2.5-fold, with EC75 310 nM. Propranolol (ß1 + ß2-AR antagonist, 0.2 microM) substantially decreased NA (310 nM)-stimulated ICaL, in human and rabbit. Phentolamine (α1 + α2-AR antagonist, 1 microM) also decreased NA-stimulated ICaL. CGP20712A (ß1-AR antagonist, 0.3 microM) and prazosin (α1-AR antagonist, 0.5 microM) each decreased NA-stimulated ICaL in both species. ICI118551 (ß2-AR antagonist, 0.1 microM), in the presence of NA + CGP20712A, had no significant effect on ICaL in human atrial myocytes, but increased it in rabbit. Yohimbine (α2-AR antagonist, 10 microM), with NA + prazosin, had no significant effect on human or rabbit ICaL. Stimulation of atrial ICaL by NA is mediated, based on AR sub-type antagonist responses, mainly by activating ß1- and α1-ARs in both human and rabbit, with a ß2-inhibitory contribution evident in rabbit, and negligible α2 involvement in either species. This improved understanding of AR sub-type contributions to noradrenergic activation of atrial ICaL could help inform future potential optimisation of pharmacological AR-antagonism strategies for inhibiting adrenergic AF.


Subject(s)
Calcium Channels, L-Type , Myocytes, Cardiac , Norepinephrine , Receptors, Adrenergic, alpha , Receptors, Adrenergic, beta , Animals , Humans , Rabbits , Atrial Fibrillation/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Norepinephrine/pharmacology , Norepinephrine/physiology , Prazosin/pharmacology , Receptors, Adrenergic, alpha-2 , Heart Atria/cytology , Receptors, Adrenergic, beta/physiology , Receptors, Adrenergic, alpha/physiology , Adrenergic alpha-Antagonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Calcium Channels, L-Type/physiology
11.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682699

ABSTRACT

Metformin is the first choice drug for the treatment of type 2 diabetes due to positive results in reducing hyperglycaemia and insulin resistance. However, diabetic patients have higher risk of ventricular arrhythmia and sudden cardiac death, and metformin failed to reduce ventricular arrhythmia in clinical trials. In order to explore the mechanisms responsible for the lack of protective effect, we investigated in vivo the effect of metformin on cardiac electrical activity in non-diabetic rats; and in vitro in isolated ventricular myocytes, HEK293 cells expressing the hERG channel and human induced pluripotent stem cells derived cardiomyocytes (hIPS-CMs). Surface electrocardiograms showed that long-term metformin treatment (7 weeks) at therapeutic doses prolonged cardiac repolarization, reflected as QT and QTc interval duration, and increased ventricular arrhythmia during the caffeine/dobutamine challenge. Patch-clamp recordings in ventricular myocytes isolated from treated animals showed that the cellular mechanism is a reduction in the cardiac transient outward potassium current (Ito). In vitro, incubation with metformin for 24 h also reduced Ito, prolonged action potential duration, and increased spontaneous contractions in ventricular myocytes isolated from control rats. Metformin incubation also reduced IhERG in HEK293 cells. Finally, metformin incubation prolonged action potential duration at 30% and 90% of repolarization in hIPS-CMs, which is compatible with the reduction of Ito and IhERG. Our results show that metformin directly modifies the electrical behavior of the normal heart. The mechanism consists in the inhibition of repolarizing currents and the subsequent decrease in repolarization capacity, which prolongs AP and QTc duration.


Subject(s)
Diabetes Mellitus, Type 2 , Induced Pluripotent Stem Cells , Metformin , Action Potentials , Animals , Arrhythmias, Cardiac/drug therapy , HEK293 Cells , Humans , Metformin/pharmacology , Myocytes, Cardiac , Potassium/pharmacology , Rats
12.
FEBS J ; 289(20): 6267-6285, 2022 10.
Article in English | MEDLINE | ID: mdl-35633070

ABSTRACT

Post-translational modification of the myofilament protein troponin I by phosphorylation is known to trigger functional changes that support enhanced contraction and relaxation of the heart. We report for the first time that human troponin I can also be modified by SUMOylation at lysine 177. Functionally, TnI SUMOylation is not a factor in the development of passive and maximal force generation in response to calcium, however this modification seems to act indirectly by preventing SUMOylation of other myofilament proteins to alter calcium sensitivity and cooperativity of myofilaments. Utilising a novel, custom SUMO site-specific antibody that recognises only the SUMOylated form of troponin I, we verify that this modification occurs in human heart and that it is upregulated during disease.


Subject(s)
Calcium , Troponin I , Calcium/metabolism , Humans , Lysine/metabolism , Myofibrils/metabolism , Phosphorylation , Sumoylation , Troponin I/genetics , Troponin I/metabolism
13.
Front Med (Lausanne) ; 9: 866454, 2022.
Article in English | MEDLINE | ID: mdl-35372426

ABSTRACT

Background: The U.S. Food and Drug Administration (FDA) has stated that citalopram and escitalopram should not be used at daily doses above 40 mg/20 mg due to risk for development of fatal ventricular arrhythmias like torsade de pointes (TdP). Yet, supratherapeutic serum concentrations of citalopram are common and predicting patients at risk for TdP is of high clinical value. Accordingly, we investigated whether QRS/QTc; developed for predicting TdP in hypothermic patients could be used in citalopram intoxication. Methods: A total of 16 publications describing patients suffering from complications due to citalopram or escitalopram treatment, or intoxication with the same substances, were included after a systematic search. The main criterion for inclusion was admission ECG, either with given QRS and QTc values or with attached ECG-files that enabled calculation. Results: QRS/QTc rather that QTc alone emerged as a marker of ventricular arrhythmia in the 16 included case reports, with highly significant (p < 0.0005) lower values in patients displaying ventricular arrhythmias. Conclusion: Citalopram and escitalopram are extensively used in treatment of depressive disorders, and a large proportion of patients have supratherapeutic serum concentrations. Calculation of QRS/QTc in available case reports show that this novel ECG-marker has potential to predict patients at risk for developing ventricular arrhythmias.

14.
Bioengineering (Basel) ; 9(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35049741

ABSTRACT

In this work, we show that valve-based bioprinting induces no measurable detrimental effects on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The aim of the current study was three-fold: first, to assess the response of hiPSC-CMs to several hydrogel formulations by measuring electrophysiological function; second, to customise a new microvalve-based cell printing mechanism in order to deliver hiPSC-CMs suspensions, and third, to compare the traditional manual pipetting cell-culture method and cardiomyocytes dispensed with the bioprinter. To achieve the first and third objectives, iCell2 (Cellular Dynamics International) hiPSC-CMs were used. The effects of well-known drugs were tested on iCell2 cultured by manual pipetting and bioprinting. Despite the results showing that hydrogels and their cross-linkers significantly reduced the electrophysiological performance of the cells compared with those cultured on fibronectin, the bio-ink droplets containing a liquid suspension of live cardiomyocytes proved to be an alternative to standard manual handling and could reduce the number of cells required for drug testing, with no significant differences in drug-sensitivity between both approaches. These results provide a basis for the development of a novel bioprinter with nanolitre resolution to decrease the required number of cells and to automate the cell plating process.

15.
Cardiovasc Res ; 118(15): 3112-3125, 2022 12 09.
Article in English | MEDLINE | ID: mdl-35020837

ABSTRACT

AIMS: Cardiac electrophysiological heterogeneity includes: (i) regional differences in action potential (AP) waveform, (ii) AP waveform differences in cells isolated from a single region, (iii) variability of the contribution of individual ion currents in cells with similar AP durations (APDs). The aim of this study is to assess intra-regional AP waveform differences, to quantify the contribution of specific ion channels to the APD via drug responses and to generate a population of mathematical models to investigate the mechanisms underlying heterogeneity in rabbit ventricular cells. METHODS AND RESULTS: APD in ∼50 isolated cells from subregions of the LV free wall of rabbit hearts were measured using a voltage-sensitive dye. When stimulated at 2 Hz, average APD90 value in cells from the basal epicardial region was 254 ± 25 ms (mean ± standard deviation) in 17 hearts with a mean interquartile range (IQR) of 53 ± 17 ms. Endo-epicardial and apical-basal APD90 differences accounted for ∼10% of the IQR value. Highly variable changes in APD occurred after IK(r) or ICa(L) block that included a sub-population of cells (HR) with an exaggerated (hyper) response to IK(r) inhibition. A set of 4471 AP models matching the experimental APD90 distribution was generated from a larger population of models created by random variation of the maximum conductances (Gmax) of 8 key ion channels/exchangers/pumps. This set reproduced the pattern of cell-specific responses to ICa(L) and IK(r) block, including the HR sub-population. The models exhibited a wide range of Gmax values with constrained relationships linking ICa(L) with IK(r), ICl, INCX, and INaK. CONCLUSION: Modelling the measured range of inter-cell APDs required a larger range of key Gmax values indicating that ventricular tissue has considerable inter-cell variation in channel/pump/exchanger activity. AP morphology is retained by relationships linking specific ionic conductances. These interrelationships are necessary for stable repolarization despite large inter-cell variation of individual conductances and this explains the variable sensitivity to ion channel block.


Subject(s)
Ion Channels , Myocytes, Cardiac , Animals , Rabbits , Myocytes, Cardiac/physiology
16.
J Mol Cell Cardiol ; 165: 86-102, 2022 04.
Article in English | MEDLINE | ID: mdl-34999055

ABSTRACT

Cyclic AMP is a ubiquitous second messenger used to transduce intracellular signals from a variety of Gs-coupled receptors. Compartmentalisation of protein intermediates within the cAMP signaling pathway underpins receptor-specific responses. The cAMP effector proteins protein-kinase A and EPAC are found in complexes that also contain phosphodiesterases whose presence ensures a coordinated cellular response to receptor activation events. Popeye domain containing (POPDC) proteins are the most recent class of cAMP effectors to be identified and have crucial roles in cardiac pacemaking and conduction. We report the first observation that POPDC proteins exist in complexes with members of the PDE4 family in cardiac myocytes. We show that POPDC1 preferentially binds the PDE4A sub-family via a specificity motif in the PDE4 UCR1 region and that PDE4s bind to the Popeye domain of POPDC1 in a region known to be susceptible to a mutation that causes human disease. Using a cell-permeable disruptor peptide that displaces the POPDC1-PDE4 complex we show that PDE4 activity localized to POPDC1 modulates cycle length of spontaneous Ca2+ transients firing in intact mouse sinoatrial nodes.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Cyclic AMP , Animals , Carrier Proteins/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Mice , Phosphoric Diester Hydrolases/metabolism , Second Messenger Systems , Signal Transduction
17.
Cardiovasc Res ; 118(6): 1535-1547, 2022 05 06.
Article in English | MEDLINE | ID: mdl-34132807

ABSTRACT

AIMS: Identifying novel mediators of lethal myocardial reperfusion injury that can be targeted during primary percutaneous coronary intervention (PPCI) is key to limiting the progression of patients with ST-elevation myocardial infarction (STEMI) to heart failure. Here, we show through parallel clinical and integrative preclinical studies the significance of the protease cathepsin-L on cardiac function during reperfusion injury. METHODS AND RESULTS: We found that direct cardiac release of cathepsin-L in STEMI patients (n = 76) immediately post-PPCI leads to elevated serum cathepsin-L levels and that serum levels of cathepsin-L in the first 24 h post-reperfusion are associated with reduced cardiac contractile function and increased infarct size. Preclinical studies demonstrate that inhibition of cathepsin-L release following reperfusion injury with CAA0225 reduces infarct size and improves cardiac contractile function by limiting abnormal cardiomyocyte calcium handling and apoptosis. CONCLUSION: Our findings suggest that cathepsin-L is a novel therapeutic target that could be exploited clinically to counteract the deleterious effects of acute reperfusion injury after an acute STEMI.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Cathepsins , Humans , Myocardial Infarction/therapy , Myocardial Reperfusion/adverse effects , Myocardial Reperfusion Injury/prevention & control , Percutaneous Coronary Intervention/adverse effects , Reperfusion , Treatment Outcome
18.
J Physiol ; 600(3): 483-507, 2022 02.
Article in English | MEDLINE | ID: mdl-34761809

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) in monolayers interact mechanically via cell-cell and cell-substrate adhesion. Spatiotemporal features of contraction were analysed in hiPSC-CM monolayers (1) attached to glass or plastic (Young's modulus (E) >1 GPa), (2) detached (substrate-free) and (3) attached to a flexible collagen hydrogel (E = 22 kPa). The effects of isoprenaline on contraction were compared between rigid and flexible substrates. To clarify the underlying mechanisms, further gene expression and computational studies were performed. HiPSC-CM monolayers exhibited multiphasic contractile profiles on rigid surfaces in contrast to hydrogels, substrate-free cultures or single cells where only simple twitch-like time-courses were observed. Isoprenaline did not change the contraction profile on either surface, but its lusitropic and chronotropic effects were greater in hydrogel compared with glass. There was no significant difference between stiff and flexible substrates in regard to expression of the stress-activated genes NPPA and NPPB. A computational model of cell clusters demonstrated similar complex contractile interactions on stiff substrates as a consequence of cell-to-cell functional heterogeneity. Rigid biomaterial surfaces give rise to unphysiological, multiphasic contractions in hiPSC-CM monolayers. Flexible substrates are necessary for normal twitch-like contractility kinetics and interpretation of inotropic interventions. KEY POINTS: Spatiotemporal contractility analysis of human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) monolayers seeded on conventional, rigid surfaces (glass or plastic) revealed the presence of multiphasic contraction patterns across the monolayer with a high variability, despite action potentials recorded in the same areas being identical. These multiphasic patterns are not present in single cells, in detached monolayers or in monolayers seeded on soft substrates such as a hydrogel, where only 'twitch'-like transients are observed. HiPSC-CM monolayers that display a high percentage of regions with multiphasic contraction have significantly increased contractile duration and a decreased lusotropic drug response. There is no indication that the multiphasic contraction patterns are associated with significant activation of the stress-activated NPPA or NPPB signalling pathways. A computational model of cell clusters supports the biological findings that the rigid surface and the differential cell-substrate adhesion underly multiphasic contractile behaviour of hiPSC-CMs.


Subject(s)
Induced Pluripotent Stem Cells , Action Potentials , Cell Adhesion , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/physiology , Myocardial Contraction , Myocytes, Cardiac/metabolism
19.
Front Physiol ; 12: 769586, 2021.
Article in English | MEDLINE | ID: mdl-34867476

ABSTRACT

Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 2018, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research.

20.
JCI Insight ; 6(15)2021 08 09.
Article in English | MEDLINE | ID: mdl-34369384

ABSTRACT

Engineered heart tissue (EHT) strategies, by combining cells within a hydrogel matrix, may be a novel therapy for heart failure. EHTs restore cardiac function in rodent injury models, but more data are needed in clinically relevant settings. Accordingly, an upscaled EHT patch (2.5 cm × 1.5 cm × 1.5 mm) consisting of up to 20 million human induced pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) embedded in a fibrin-based hydrogel was developed. A rabbit myocardial infarction model was then established to test for feasibility and efficacy. Our data showed that hPSC-CMs in EHTs became more aligned over 28 days and had improved contraction kinetics and faster calcium transients. Blinded echocardiographic analysis revealed a significant improvement in function in infarcted hearts that received EHTs, along with reduction in infarct scar size by 35%. Vascularization from the host to the patch was observed at week 1 and stable to week 4, but electrical coupling between patch and host heart was not observed. In vivo telemetry recordings and ex vivo arrhythmia provocation protocols showed that the patch was not pro-arrhythmic. In summary, EHTs improved function and reduced scar size without causing arrhythmia, which may be due to the lack of electrical coupling between patch and host heart.


Subject(s)
Heart Failure , Myocardial Infarction , Myocardium/cytology , Tissue Engineering/methods , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , Cardiac Surgical Procedures , Guided Tissue Regeneration/methods , Heart Failure/prevention & control , Heart Failure/therapy , Humans , Hydrogels/therapeutic use , Induced Pluripotent Stem Cells , Myocardial Contraction/physiology , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...