Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Am Assoc Lab Anim Sci ; 62(5): 464-469, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37673664

ABSTRACT

Euthanasia is the humane termination of an animal's life and an important consideration for scientists, veterinarians, regulators, and others contemplating investigations involving animals. Techniques for euthanasia must induce the most rapid, painless, and distress-free death possible. This study investigated the effectiveness of direct current induction of ventricular fibrillation for the euthanasia of sheep after a primary study in which artifacts or chemical contamination from injectable euthanasia agents were undesirable. Female crossbred adult sheep (Ovis aries; n = 12) under deep isoflurane general anesthesia were instrumented with electrophysiology catheters to induce ventricular fibrillation for euthanasia. Data regarding invasive arterial blood pressure, expired airway gases, limb lead electrocardiograms, and pulse oximetry were collected and assessed just prior to, immediately after, and at 5, 10, 15, and 20min after energy delivery. In all animals, a single 10-s application of 9V of direct current to the right ventricular endocardium via the electrophysiology catheter induced persistent ventricular fibrillation. Arterial blood pressure (mean ± 1 SD) immediately after fibrillation induction was 22.9±4.5mmHg, with negligible difference between systolic and diastolic pressures. The lack of differential pressure continued through the end of the monitoring period. Arterial blood pressure reached an initial nadir at 1??0.5min after fibrillation induction, peaked (40.8±11.1mmHg) due to a vasoconstrictive reflex at 3min after induction, and returned to a static uniform pressure (20.4±17.8mmHg) with mildly increased variability due to reflexive diaphragmatic contractions at 10min after induction. The use of 9V direct current for the induction of ventricular fibrillation via an electrophysiology catheter is a reliable method of euthanasia in sheep.


Subject(s)
Isoflurane , Sheep Diseases , Animals , Female , Sheep , Ventricular Fibrillation/etiology , Euthanasia, Animal/methods , Blood Pressure , Arterial Pressure , Isoflurane/adverse effects
2.
Evolution ; 67(1): 157-69, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23289569

ABSTRACT

Phenotypic selection that is sustained over time underlies both anagenesis and cladogenesis, but the conditions that lead to such selection and what causes variation in selection are not well known. We measured the selection exerted by three species of predispersal seed predators of lodgepole pine (Pinus contorta latifolia) in the South Hills, Idaho, and found that net selection on different cone and seed traits exerted by red crossbills (Loxia curvirostra) and cone borer moths (Eucosma recissoriana) over 10 years of seed crops was similar to that measured in another mountain range. We also found that the strength of selection increased as seed predation increased, which provides a mechanism for the correlation between the escalation of seed defenses and the density of seed predators. Red crossbills consume the most seeds and selection they exert accounts for much of the selection experienced by lodgepole pine, providing additional support for a coevolutionary arms race between crossbills and lodgepole pine in the South Hills. The third seed predator, hairy woodpeckers (Picoides villosus), consumed less than one-sixth as many seeds as crossbills. Across the northern Rocky Mountains, woodpecker abundance and therefore selective impact appears limited by the elevated seed defenses of lodgepole pine.


Subject(s)
Food Chain , Phenotype , Pinus/genetics , Seeds/genetics , Selection, Genetic , Animals , Biota , Evolution, Molecular , Moths , Passeriformes
3.
Proc Biol Sci ; 279(1745): 4223-9, 2012 Oct 22.
Article in English | MEDLINE | ID: mdl-22915674

ABSTRACT

How reproductive isolation is related to divergent natural selection is a central question in speciation. Here, we focus on several ecologically specialized taxa or 'call types' of red crossbills (Loxia curvirostra complex), one of the few groups of birds providing much evidence for ecological speciation. Call types differ in bill sizes and feeding capabilities, and also differ in vocalizations, such that contact calls provide information on crossbill phenotype. We found that two call types of red crossbills were more likely to approach playbacks of their own call type than those of heterotypics, and that their propensity to approach heterotypics decreased with increasing divergence in bill size. Although call similarity also decreased with increasing divergence in bill size, comparisons of responses to familiar versus unfamiliar call types indicate that the decrease in the propensity to approach heterotypics with increasing divergence in bill size was a learned response, and not a by-product of calls diverging pleiotropically as bill size diverged. Because crossbills choose mates while in flocks, assortative flocking could lead indirectly to assortative mating as a by-product. These patterns of association therefore provide a mechanism by which increasing divergent selection can lead to increasing reproductive isolation.


Subject(s)
Animal Communication , Genetic Speciation , Passeriformes/physiology , Reproductive Isolation , Social Behavior , Acoustic Stimulation , Animals , Beak/anatomy & histology , Passeriformes/anatomy & histology , Phenotype , Selection, Genetic
4.
J Anim Ecol ; 81(2): 352-63, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22010811

ABSTRACT

1. A large number of migratory bird species appear to be declining as the result of climate change, but whether resident bird species have or will be adversely affected by climate change is less clear. We focus on the South Hills crossbill (Loxia curvirostra complex), which is endemic to about 70 km(2) of Rocky Mountain lodgepole pine (Pinus contorta latifolia) forest in southern Idaho, USA. 2. Our results indicate that the South Hills crossbill has declined by over 60% between 2003 and 2008, and that decreasing adult survival drives this population decline. 3. We evaluated the relative support for multiple hypotheses linking crossbill survival to climate, an ectoparasitic mite (scaly-leg mites Knemidokoptes jamaicensis), and the recent emergence of West Nile virus. Changes in adult apparent survival rate were closely associated with average spring and annual temperatures, and with high temperatures (≥32 °C) during summer, which have increased during the last decade. In contrast, there was little evidence that scaly-leg mites or West Nile virus contributed to recent declines in adult survival. 4. The most probable mechanism causing the decline in adult survival and population size is a decrease in the availability of their primary food resource, seeds in serotinous pine cones. Cone production has declined with increasing annual temperatures, and these cones appear to be prematurely opening owing to increasingly hot summer conditions releasing their seeds and reducing the carrying capacity for crossbills later in the year. 5. In light of regional climate change forecasts, which include an increase in both annual temperature and hot days (>32 °C), and the likely disappearance of lodgepole pine from southern Idaho by the end of this century, additional research is needed to determine how to maintain lodgepole pine forests and their supply of seeds to conserve one of the few bird species endemic to the continental United States.


Subject(s)
Finches/physiology , Global Warming , Pinus/growth & development , Seeds/growth & development , Acari/physiology , Animals , Female , Finches/parasitology , Finches/virology , Idaho , Male , Models, Biological , Population Dynamics , West Nile Fever/epidemiology , West Nile Fever/veterinary , West Nile virus/physiology
5.
Am Nat ; 169(4): 455-65, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17273981

ABSTRACT

We examined three ecological factors potentially causing premating reproductive isolation to determine whether divergent selection as a result of coevolution between South Hills crossbills (Loxia curvirostra complex) and Rocky Mountain lodgepole pine (Pinus contorta latifolia) promotes ecological speciation. One factor was habitat isolation arising because of enhanced seed defenses of lodgepole pine in the South Hills. This caused the crossbill call types (morphologically and vocally differentiated forms) adapted to alternative resources to be rare. Another occurred when crossbills of other call types moved into the South Hills late in the breeding season and feeding conditions were deteriorating so that relatively few non-South Hills crossbills bred ("immigrant infecundity"). Finally, among those crossbills that bred, pairing was strongly assortative by call type (behavioral isolation). Total reproductive isolation between South Hills crossbills and the two other crossbills most common in the South Hills (call types 2 and 5) summed to .9975 and .9998, respectively, on a scale of 0 (no reproductive isolation) to 1 (complete reproductive isolation). These extremely high levels of reproductive isolation indicate that the divergent selection resulting from the coevolutionary arms race between crossbills and lodgepole pine is causing the South Hills crossbill to speciate.


Subject(s)
Adaptation, Biological/physiology , Biological Evolution , Ecosystem , Genetic Speciation , Passeriformes/genetics , Pinus/genetics , Reproduction/physiology , Animals , Northwestern United States , Species Specificity , Vocalization, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...