Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39131318

ABSTRACT

Experimental access to cell types within the mammalian spinal cord is severely limited by the availability of genetic tools. To enable access to lower motor neurons (LMNs) and LMN subtypes, which function to integrate information from the brain and control movement through direct innervation of effector muscles, we generated single cell multiome datasets from mouse and macaque spinal cords and discovered putative enhancers for each neuronal population. We cloned these enhancers into adeno-associated viral vectors (AAVs) driving a reporter fluorophore and functionally screened them in mouse. The most promising candidate enhancers were then extensively characterized using imaging and molecular techniques and further tested in rat and macaque to show conservation of LMN labeling. Additionally, we combined enhancer elements into a single vector to achieve simultaneous labeling of upper motor neurons (UMNs) and LMNs. This unprecedented LMN toolkit will enable future investigations of cell type function across species and potential therapeutic interventions for human neurodegenerative diseases.

2.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948843

ABSTRACT

The telencephalon of the mammalian brain comprises multiple regions and circuit pathways that play adaptive and integrative roles in a variety of brain functions. There is a wide array of GABAergic neurons in the telencephalon; they play a multitude of circuit functions, and dysfunction of these neurons has been implicated in diverse brain disorders. In this study, we conducted a systematic and in-depth analysis of the transcriptomic and spatial organization of GABAergic neuronal types in all regions of the mouse telencephalon and their developmental origins. This was accomplished by utilizing 611,423 single-cell transcriptomes from the comprehensive and high-resolution transcriptomic and spatial cell type atlas for the adult whole mouse brain we have generated, supplemented with an additional single-cell RNA-sequencing dataset containing 99,438 high-quality single-cell transcriptomes collected from the pre- and postnatal developing mouse brain. We present a hierarchically organized adult telencephalic GABAergic neuronal cell type taxonomy of 7 classes, 52 subclasses, 284 supertypes, and 1,051 clusters, as well as a corresponding developmental taxonomy of 450 clusters across different ages. Detailed charting efforts reveal extraordinary complexity where relationships among cell types reflect both spatial locations and developmental origins. Transcriptomically and developmentally related cell types can often be found in distant and diverse brain regions indicating that long-distance migration and dispersion is a common characteristic of nearly all classes of telencephalic GABAergic neurons. Additionally, we find various spatial dimensions of both discrete and continuous variations among related cell types that are correlated with gene expression gradients. Lastly, we find that cortical, striatal and some pallidal GABAergic neurons undergo extensive postnatal diversification, whereas septal and most pallidal GABAergic neuronal types emerge simultaneously during the embryonic stage with limited postnatal diversification. Overall, the telencephalic GABAergic cell type taxonomy can serve as a foundational reference for molecular, structural and functional studies of cell types and circuits by the entire community.

3.
Learn Health Syst ; 8(3): e10415, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39036533

ABSTRACT

In 2006 following several years of preliminary study, the American Society of Clinical Oncology (ASCO) launched the Quality Oncology Practice Initiative (QOPI). This cancer-focused quality initiative evolved considerably over the next decade-and-a-half and is expanding globally. QOPI is undoubtedly the leading standard-bearer for quality cancer care and contemporary medical oncology practice. The program garners attention and respect among federal programs, private insurers, and medical oncology practices across the nation. The MaineHealth Cancer Care Network (MHCCN) has undergone expansive growth since 2017. The network provides cancer care to more than 70% of the cases in Maine in a largely rural health system in Northern New England. In fall 2020, the MHCCN QOPI project leadership, following collaborative discussions with the ASCO-QOPI team, elected to proceed with a health system-cancer network-wide QOPI certification. Key themes emerged over the course of our two-year journey including: (1) Developing a highly interprofessional team committed to the project; (2) Capitalizing on a single electronic medical record for data transmission to CancerLinQ; (3) Prior experience, especially policy development, in other cancer-focused accreditation programs across the network; and (4) Building consensus through quarterly stakeholder meetings and awarding Continuing Medical Education (CME) and American Board of Medical Specialists (ABMS) Maintenance of Certification (MOC) credits to oncologists. All participants demonstrated a genuine spirit to work together to achieve certification. We report our successful journey seeking ASCO-QOPI certification across our network, which to our knowledge is the first-of-its-kind endeavor.

4.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38854088

ABSTRACT

Background: Anorexia nervosa (AN) is a mental and behavioral health condition characterized by an intense fear of weight or fat gain, severe restriction of food intake resulting in low body weight, and distorted self-perception of body shape or weight. While substantial research has focused on general anxiety in AN, less is known about eating-related anxiety and its underlying neural mechanisms. Therefore, we sought to characterize anxiety-to-eat in AN and examine the neurometabolic profile within the dorsal anterior cingulate cortex (dACC), a brain region putatively involved in magnifying the threat response. Methods: Women seeking inpatient treatment for AN and women of healthy weight without a lifetime history of an eating disorder (healthy controls; HC) completed a computer-based behavioral task assessing anxiety-to-eat in response to images of higher (HED) and lower (LED) energy density foods. Participants also underwent magnetic resonance spectroscopy of the dACC in a 3 Tesla scanner. Results: The AN group reported greater anxiety to eat HED and LED foods relative to the HC group. Both groups reported greater anxiety to eat HED foods relative to LED foods. The neurometabolite myo-inositol (mI) was lower in the dACC in AN relative to HC, and mI levels negatively predicted anxiety to eat HED but not LED foods in the AN group only. mI levels in the dACC were independent of body weight, body mass, and general anxiety. Conclusions: These findings provide critical new insight into the clinically challenging feature and underlying neural mechanisms of eating-related anxiety and indicate mI levels in the dACC could serve as a novel biomarker of illness severity that is independent of body weight to identify individuals vulnerable to disordered eating or eating pathology as well as a potential therapeutic target.

5.
J Clin Invest ; 134(13)2024 May 09.
Article in English | MEDLINE | ID: mdl-38722697

ABSTRACT

Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske iron-sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, the hearts underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA sequencing revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in α-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes, resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.


Subject(s)
Cell Proliferation , Mitochondria, Heart , Myocytes, Cardiac , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mice , Mitochondria, Heart/metabolism , Mitochondria, Heart/genetics , Mitochondria, Heart/pathology , Mice, Knockout , Electron Transport Complex III/metabolism , Electron Transport Complex III/genetics , Glucose/metabolism
6.
NEJM Evid ; 3(5): EVIDoa2300342, 2024 May.
Article in English | MEDLINE | ID: mdl-38815164

ABSTRACT

BACKGROUND: Detection and containment of hospital outbreaks currently depend on variable and personnel-intensive surveillance methods. Whether automated statistical surveillance for outbreaks of health care-associated pathogens allows earlier containment efforts that would reduce the size of outbreaks is unknown. METHODS: We conducted a cluster-randomized trial in 82 community hospitals within a larger health care system. All hospitals followed an outbreak response protocol when outbreaks were detected by their infection prevention programs. Half of the hospitals additionally used statistical surveillance of microbiology data, which alerted infection prevention programs to outbreaks. Statistical surveillance was also applied to microbiology data from control hospitals without alerting their infection prevention programs. The primary outcome was the number of additional cases occurring after outbreak detection. Analyses assessed differences between the intervention period (July 2019 to January 2022) versus baseline period (February 2017 to January 2019) between randomized groups. A post hoc analysis separately assessed pre-coronavirus disease 2019 (Covid-19) and Covid-19 pandemic intervention periods. RESULTS: Real-time alerts did not significantly reduce the number of additional outbreak cases (intervention period versus baseline: statistical surveillance relative rate [RR]=1.41, control RR=1.81; difference-in-differences, 0.78; 95% confidence interval [CI], 0.40 to 1.52; P=0.46). Comparing only the prepandemic intervention with baseline periods, the statistical outbreak surveillance group was associated with a 64.1% reduction in additional cases (statistical surveillance RR=0.78, control RR=2.19; difference-in-differences, 0.36; 95% CI, 0.13 to 0.99). There was no similarly observed association between the pandemic versus baseline periods (statistical surveillance RR=1.56, control RR=1.66; difference-in-differences, 0.94; 95% CI, 0.46 to 1.92). CONCLUSIONS: Automated detection of hospital outbreaks using statistical surveillance did not reduce overall outbreak size in the context of an ongoing pandemic. (Funded by the Centers for Disease Control and Prevention; ClinicalTrials.gov number, NCT04053075. Support for HCA Healthcare's participation in the study was provided in kind by HCA.).


Subject(s)
COVID-19 , Cross Infection , Disease Outbreaks , Humans , Disease Outbreaks/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Cross Infection/epidemiology , Cross Infection/prevention & control , Infection Control/methods , SARS-CoV-2 , Hospitals, Community
8.
Top Stroke Rehabil ; : 1-10, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785263

ABSTRACT

BACKGROUND: When pedaling a coupled-crank arm ergometer, individuals with hemiplegia may experience nonparetic arm overcompensation, and paretic arm resistance, due to neuromechanical deficits. Technologies that foster independent limb contributions may increase the effectiveness of exercise for people poststroke. OBJECTIVE: Examine the speed during uncoupled pedaling with the Advanced Virtual Exercise Environment Device among individuals poststroke and non-impaired comparisons. METHODS: We recruited 2 groups:Poststroke and Comparison. Participants attended one lab session and performed peak speed tests and a graded exercise repeated for bilateral pedaling, unilateral (left, right). RESULTS: Thirty-one participants completed the protocol (16 women, 15 men). Poststroke participants pedaled slower during the bilateral speed test (64 ± 39 RPM, p < .001), and graded exercise, (54 ± 28 RPM, p < .001) versus comparisons (141 ± 19, 104 ± 12 RPM). Poststroke individuals had lower peak RPM during the unilateral speed test with their paretic arm (70 ± 46 RPM, p < .001) and graded exercise (58 ± 33 RPM, p < .001) compared to their unilateral speed test (130 ± 37 RPM) and graded exercise (108 ± 25 RPM) with their nonparetic arm. Comparisons did not differ between arms during speed tests and graded exercise. Poststroke participants demonstrated lower peak speed with their affected arm during the bilateral speed test (52 ± 42 RPM, p < .001) and graded exercise (49 ± 28 RPM, p = .008) compared to the same arm during unilateral speed (70 ± 46 RPM) and graded exercise (58 ± 33 RPM). CONCLUSIONS: Poststroke participants pedaled faster with their affected arm unilaterally versus bilateral pedaling, suggesting interhemispheric interference that reduces the ability to recruit the paretic arm during bilateral exercise.

9.
Front Behav Neurosci ; 18: 1363497, 2024.
Article in English | MEDLINE | ID: mdl-38549620

ABSTRACT

Synthetic exendin-4 (EX4, exenatide), is a GLP-1 receptor agonist used clinically to treat glycemia in Type-2 diabetes mellitus. EX4 also promotes weight loss and alters food reward-seeking behaviors in part due to activation of GLP-1 receptors in the mesolimbic dopamine system. Evidence suggests that GLP-1 receptor activity can directly attenuate cue-induced reward seeking. Here, we tested the effects of EX4 (0.6, 1.2, and 2.4 µg/kg, i.p.) on incentive cue (IC) responding, using a task where rats emit a nosepoke response during an intermittent reward-predictive IC to obtain a sucrose reward. EX4 dose-dependently attenuated responding to ICs and increased the latencies to respond to the IC and enter the sucrose reward cup. Moreover, EX4 dose-dependently decreased the total number of active port nosepokes for every cue presented. There was no effect of EX4 on the number of reward cup entries per reward earned, a related reward-seeking metric with similar locomotor demand. There was a dose-dependent interaction between the EX4 dose and session time on the responding to ICs and nosepoke response latency. The interaction indicated that effects of EX4 at the beginning and end of the session differed by the dose of EX4, suggesting dose-dependent pharmacokinetic effects. EX4 had no effect on free sucrose consumption behavior (i.e., total volume consumed, bout size, number of bouts) within the range of total sucrose volumes obtainable during the IC task (~3.5 ml). However, when rats were given unrestricted access for 1 h, where rats obtained much larger total volumes of sucrose (~30 ml), we observed some dose-dependent EX4 effects on drinking behavior, including decreases in total volume consumed. Together, these findings suggest that activation of the GLP-1 receptor modulates the incentive properties of cues attributed with motivational significance.

10.
Healthcare (Basel) ; 12(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38470702

ABSTRACT

Adolescent mental health is an urgent global public health issue. Youth participatory action research is an effective strategy to amplify youth voices and can serve as a catalyst for evidence-based action addressing the mental health crisis. To illustrate the benefits of youth participatory action research for informing community health, we describe an ongoing collaboration with a youth council located in the central coast of California, USA. Research methods included an anonymous online self-report survey to gather information about the mental health of high school students in 2020 (n = 176) and 2022 (n = 234), 93% Latinx/Mexican American. Both surveys included a four-item patient health questionnaire to screen for depression and anxiety risk, in addition to scaled and open-ended survey questions selected by the youth leaders based on their research questions. Quantitative and qualitative results indicated a significant but small decrease in mental health risk, and a continued need for resources to access mental health support. Results led to community-based action aimed at improving local youth mental health. The interdisciplinary research team (psychology and public health) and youth leaders share reflections highlighting the innovative, empowering, and transformative impact of youth participatory action research as a tool for improving community health.

11.
Cell Rep ; 43(4): 113993, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38551963

ABSTRACT

Corticospinal neurons (CSNs) synapse directly on spinal neurons, a diverse assortment of cells with unique structural and functional properties necessary for body movements. CSNs modulating forelimb behavior fractionate into caudal forelimb area (CFA) and rostral forelimb area (RFA) motor cortical populations. Despite their prominence, the full diversity of spinal neurons targeted by CFA and RFA CSNs is uncharted. Here, we use anatomical and RNA sequencing methods to show that CSNs synapse onto a remarkably selective group of spinal cell types, favoring inhibitory populations that regulate motoneuron activity and gate sensory feedback. CFA and RFA CSNs target similar spinal neuron types, with notable exceptions that suggest that these populations differ in how they influence behavior. Finally, axon collaterals of CFA and RFA CSNs target similar brain regions yet receive highly divergent inputs. These results detail the rules of CSN connectivity throughout the brain and spinal cord for two regions critical for forelimb behavior.


Subject(s)
Forelimb , Pyramidal Tracts , Animals , Forelimb/physiology , Pyramidal Tracts/physiology , Spinal Cord/physiology , Spinal Cord/cytology , Mice , Motor Cortex/physiology , Neurons/physiology , Motor Neurons/physiology , Female , Male , Axons/physiology , Synapses/physiology
12.
Article in English | MEDLINE | ID: mdl-38346427

ABSTRACT

BACKGROUND: Switching to the 2-drug regimen dolutegravir/lamivudine demonstrated durable non-inferior efficacy vs continuing 3- or 4-drug tenofovir alafenamide-based regimens for maintaining virologic suppression in people with HIV-1 through Week 144 in TANGO. SETTING: 134 centers, 10 countries. METHODS: Adults with HIV-1 RNA <50 copies/mL for >6 months and no history of virologic failure were randomized to switch from stable tenofovir alafenamide-based regimens to dolutegravir/lamivudine on Day 1 (early-switch group) for 196 weeks. Those randomized to continue tenofovir alafenamide-based regimens on Day 1 who maintained virologic suppression at Week 144 switched to dolutegravir/lamivudine at Week 148 (late-switch group). Efficacy, safety, and tolerability (including weight and biomarker changes) of dolutegravir/lamivudine in early-switch and late-switch groups were assessed through Week 196. RESULTS: Overall, 369 participants switched to dolutegravir/lamivudine on Day 1 (early-switch) and 298 switched at Week 148 (late-switch). In the early-switch group, 83% (306/369) maintained virologic suppression through Year 4, and 3% (11/369) reported new adverse events between Weeks 144 and 196. The late-switch group at Week 196 and early-switch group at Week 48 had comparable proportions with virologic suppression (93% each) and similar safety profiles. No late-switch participants and 1 early-switch participant met confirmed virologic withdrawal criteria through Week 196, with no resistance-associated mutations observed. Treatment continued to be well tolerated long-term. CONCLUSION: Switching from tenofovir alafenamide-based regimens to dolutegravir/lamivudine showed durable efficacy, high barrier to resistance, and good tolerability through 4 years. These results support dolutegravir/lamivudine as a robust treatment for maintaining virologic suppression.

13.
JCO Oncol Pract ; 20(5): 688-698, 2024 May.
Article in English | MEDLINE | ID: mdl-38354324

ABSTRACT

PURPOSE: Little data exist regarding approaches to support oncology professionals who deliver cancer care for underserved populations. In response, ASCO developed the Serving the Underserved Task Force to learn from and support oncology professionals serving underserved populations. METHODS: The Task Force developed a 28-question survey to assess oncology professionals' experiences and strategies to support their work caring for underserved populations. The survey was deployed via an online link to 600 oncology professionals and assessed respondent and patient demographic characteristics, clinic-based processes to coordinate health-related social services, and strategies for professional society support and engagement. We used chi-square tests to evaluate whether there were associations between percent full-time equivalent (FTE) effort serving underserved populations (<50% FTE v ≥50% FTE) with responses. RESULTS: Of 462 respondents who completed the survey (77% response rate), 79 (17.1%) were Asian; 30 (6.5%) Black; 43 (9.3%) Hispanic or Latino/Latina; and 277 (60%) White. The majority (n = 366, 79.2%) had a medical doctor degree (MD). A total of 174 (37.7%) had <25% FTE, 151 (32.7%) had 25%-50% FTE, and 121 (26.2%) had ≥50% FTE effort serving underserved populations. Most best guessed patients' sociodemographic characteristics (n = 388; 84%), while 42 (9.2%) used data collected by the clinic. Social workers coordinated most health-related social services. However, in clinical settings with high proportions of underserved patients, there was greater reliance on nonclinical personnel, such as navigators (odds ratio [OR], 2.15 [95% CI, 1.07 to 4.33]) or no individual (OR, 2.55 [95% CI, 1.14 to 5.72]) for addressing mental health needs and greater reliance on physicians or advance practice practitioners (OR, 2.54 [95% CI, 1.11 to 5.81]) or no individual (OR, 1.91 [95% CI, 1.09 to 3.35]) for addressing childcare or eldercare needs compared with social workers. Prioritization of solutions, which did not differ by FTE effort serving underserved populations, included a return-on-investment model to support personnel, integrated health-related social needs screening, and collaboration with the professional society on advocacy and policy. CONCLUSION: The findings highlight crucial strategies that professional societies can implement to support oncology clinicians serving underserved populations with cancer.


Subject(s)
Medical Oncology , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/epidemiology , United States , Male , Female , Medical Oncology/methods , Surveys and Questionnaires , Middle Aged , Adult , Advisory Committees , Medically Underserved Area , Vulnerable Populations
14.
bioRxiv ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-38168182

ABSTRACT

Biological aging can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function. Aging is a complex and dynamic process which influences distinct cell types in a myriad of ways. The cellular architecture of the mammalian brain is heterogeneous and diverse, making it challenging to identify precise areas and cell types of the brain that are more susceptible to aging than others. Here, we present a high-resolution single-cell RNA sequencing dataset containing ~1.2 million high-quality single-cell transcriptomic profiles of brain cells from young adult and aged mice across both sexes, including areas spanning the forebrain, midbrain, and hindbrain. We find age-associated gene expression signatures across nearly all 130+ neuronal and non-neuronal cell subclasses we identified. We detect the greatest gene expression changes in non-neuronal cell types, suggesting that different cell types in the brain vary in their susceptibility to aging. We identify specific, age-enriched clusters within specific glial, vascular, and immune cell types from both cortical and subcortical regions of the brain, and specific gene expression changes associated with cell senescence, inflammation, decrease in new myelination, and decreased vasculature integrity. We also identify genes with expression changes across multiple cell subclasses, pointing to certain mechanisms of aging that may occur across wide regions or broad cell types of the brain. Finally, we discover the greatest gene expression changes in cell types localized to the third ventricle of the hypothalamus, including tanycytes, ependymal cells, and Tbx3+ neurons found in the arcuate nucleus that are part of the neuronal circuits regulating food intake and energy homeostasis. These findings suggest that the area surrounding the third ventricle in the hypothalamus may be a hub for aging in the mouse brain. Overall, we reveal a dynamic landscape of cell-type-specific transcriptomic changes in the brain associated with normal aging that will serve as a foundation for the investigation of functional changes in the aging process and the interaction of aging and diseases.

SELECTION OF CITATIONS
SEARCH DETAIL