Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Nat Commun ; 15(1): 2209, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38467636

ABSTRACT

Despite increasing risks from sea-level rise (SLR) and storms, US coastal communities continue to attract relatively high-income residents, and coastal property values continue to rise. To understand this seeming paradox and explore policy responses, we develop the Coastal Home Ownership Model (C-HOM) and analyze the long-term evolution of coastal real estate markets. C-HOM incorporates changing physical attributes of the coast, economic values of these attributes, and dynamic risks associated with storms and flooding. Resident owners, renters, and non-resident investors jointly determine coastal property values and the policy choices that influence the physical evolution of the coast. In the coupled system, we find that subsidies for coastal management, such as beach nourishment, tax advantages for high-income property owners, and stable or increasing property values outside the coastal zone all dampen the effects of SLR on coastal property values. The effects, however, are temporary and only delay precipitous declines as total inundation approaches. By removing subsidies, prices would more accurately reflect risks from SLR but also trigger more coastal gentrification, as relatively high-income owners enter the market and self-finance nourishment. Our results suggest a policy tradeoff between slowing demographic transitions in coastal communities and allowing property markets to adjust smoothly to risks from climate change.


Subject(s)
Floods , Sea Level Rise , Climate Change , Policy
2.
Proc Natl Acad Sci U S A ; 120(41): e2215676120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37782803

ABSTRACT

Scientists seek to understand the causal processes that generate sustainability problems and determine effective solutions. Yet, causal inquiry in nature-society systems is hampered by conceptual and methodological challenges that arise from nature-society interdependencies and the complex dynamics they create. Here, we demonstrate how sustainability scientists can address these challenges and make more robust causal claims through better integration between empirical analyses and process- or agent-based modeling. To illustrate how these different epistemological traditions can be integrated, we present four studies of air pollution regulation, natural resource management, and the spread of COVID-19. The studies show how integration can improve empirical estimates of causal effects, inform future research designs and data collection, enhance understanding of the complex dynamics that underlie observed temporal patterns, and elucidate causal mechanisms and the contexts in which they operate. These advances in causal understanding can help sustainability scientists develop better theories of phenomena where social and ecological processes are dynamically intertwined and prior causal knowledge and data are limited. The improved causal understanding also enhances governance by helping scientists and practitioners choose among potential interventions, decide when and how the timing of an intervention matters, and anticipate unexpected outcomes. Methodological integration, however, requires skills and efforts of all involved to learn how members of the respective other tradition think and analyze nature-society systems.


Subject(s)
Air Pollution , COVID-19 , Humans , Conservation of Natural Resources , Systems Analysis , Natural Resources
3.
Nat Protoc ; 18(9): 2745-2771, 2023 09.
Article in English | MEDLINE | ID: mdl-37542183

ABSTRACT

Atropisomers are molecules whose stereogenicity arises from restricted rotation about a single bond. They are of current importance because of their applications in catalysis, medicine and materials science. The defining feature of atropisomeric molecules is that their stereoisomers are related to one another by bond rotation: as a result, evaluating their configurational stability (i.e., the rate at which their stereoisomers interconvert) is central to any work in this area. Important atropisomeric scaffolds include C-C linked biaryls, such as the ligand BINAP and the drug vancomycin, and C-N linked amine derivatives such as the drug telenzepine. This article focuses on the three most widely used experimental methods that are available to measure the rate of racemization in atropisomers, namely: (i) kinetic analysis of the racemization of an enantioenriched sample, (ii) dynamic HPLC and (iii) variable-temperature NMR. For each technique, an explanation of the theory is set out, followed by a detailed experimental procedure. A discussion is also included of which technique to try when confronted with a new molecular structure whose properties are not yet known. None of the three procedures require complex experimental techniques, and all can be performed by using standard analytical equipment (NMR and HPLC). The time taken to determine a racemization rate depends on which experimental method is required, but for a new compound it is generally possible to measure a racemization rate in <1 d.


Subject(s)
Kinetics , Molecular Structure , Temperature , Magnetic Resonance Spectroscopy , Stereoisomerism
4.
World J Surg ; 47(7): 1684-1691, 2023 07.
Article in English | MEDLINE | ID: mdl-37029798

ABSTRACT

BACKGROUND: The shortage of trained surgeons, anesthesiologists, and obstetricians is a major contributor to the unmet need for surgical care in low- and middle-income countries, and the shortage is aggravated by migration to higher-income countries. METHODS: We performed a cross-sectional observational study, combining individual-level data of 43,621 physicians from the Health Professions Council of South Africa with data from the registers of 14 high-income countries, and international statistics on surgical workforce, in order to quantify migration to and from South Africa in both absolute and relative terms. RESULTS: Of 6670 surgeons, anesthesiologists, and obstetricians in South Africa, a total of 713 (11%) were foreign medical graduates, and 396 (6%) were from a low- or middle-income country. South Africa was an important destination primarily for physicians originating from low-income countries; 2% of all surgeons, anesthesiologists, and obstetricians from low- and middle-income countries were registered in South Africa, and 6% in the other 14 recipient countries. A total of 1295 (16%) South African surgeons, anesthesiologists, and obstetricians worked in any of the 14 studied high-income countries. CONCLUSION: South Africa is an important regional hub for surgical migration and training. A notable proportion of surgical specialists in South Africa were medical graduates from other low- or middle-income countries, whereas migration out of South Africa to high-income countries was even larger.


Subject(s)
Specialties, Surgical , Surgeons , Humans , South Africa , Cross-Sectional Studies , Human Migration , Developing Countries
5.
Nature ; 615(7952): 430-435, 2023 03.
Article in English | MEDLINE | ID: mdl-36922609

ABSTRACT

The control of tetrahedral carbon stereocentres remains a focus of modern synthetic chemistry and is enabled by their configurational stability. By contrast, trisubstituted nitrogen1, phosphorus2 and sulfur compounds3 undergo pyramidal inversion, a fundamental and well-recognized stereochemical phenomenon that is widely exploited4. However, the stereochemistry of oxonium ions-compounds bearing three substituents on a positively charged oxygen atom-is poorly developed and there are few applications of oxonium ions in synthesis beyond their existence as reactive intermediates5,6. There are no examples of configurationally stable oxonium ions in which the oxygen atom is the sole stereogenic centre, probably owing to the low barrier to oxygen pyramidal inversion7 and the perception that all oxonium ions are highly reactive. Here we describe the design, synthesis and characterization of a helically chiral triaryloxonium ion in which inversion of the oxygen lone pair is prevented through geometric restriction to enable it to function as a determinant of configuration. A combined synthesis and quantum calculation approach delineates design principles that enable configurationally stable and room-temperature isolable salts to be generated. We show that the barrier to inversion is greater than 110 kJ mol-1 and outline processes for resolution. This constitutes, to our knowledge, the only example of a chiral non-racemic and configurationally stable molecule in which the oxygen atom is the sole stereogenic centre.

6.
Nat Chem ; 15(3): 357-365, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36509852

ABSTRACT

Heterobiaryl compounds that exhibit axial chirality are of increasing value and interest across several fields, but direct oxidative methods for their enantioselective synthesis remain elusive. Here we disclose that an iron catalyst in the presence of a chiral PyBOX ligand and an oxidant enables direct coupling between naphthols and indoles to yield atropisomeric heterobiaryl compounds with high levels of enantioselectivity. The reaction exhibits remarkable chemoselectivity and exclusively yields cross-coupled products without competing homocoupling. Mechanistic investigations enable us to postulate that an indole radical is generated in the reaction but that this is probably an off-cycle event, and that the reaction proceeds through formation of a chiral Fe-bound naphthoxy radical that is trapped by a nucleophilic indole. We envision that this simple, cheap and sustainable catalytic manifold will facilitate access to a range of heterobiaryl compounds and enable their application across the fields of materials science, medicinal chemistry and catalysis.

7.
J Am Chem Soc ; 145(1): 171-178, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36571763

ABSTRACT

Controlling absolute stereochemistry in catalytic photochemical reactions is generally challenging owing to high rates of background reactivity. Successful strategies broadly rely on selective excitation of the reaction substrate when associated with a chiral catalyst. Recent studies have demonstrated that chiral Lewis acid complexes can enable selective energy transfer from a photosensitizer to facilitate enantioselective triplet state reactions. Here, we apply this approach to the enantioselective catalysis of a 6π photocyclization through the design of an iridium photosensitizer optimized to undergo energy transfer to a reaction substrate only in the presence of a chiral Lewis acid complex. Among a group of iridium(III) sensitizers, enantioselectivity and yield closely correlate with photocatalyst triplet energy within a narrow window enabled by a modest reduction in substrate triplet energy upon binding a scandium/ligand complex. These results demonstrate that photocatalyst tuning offers a means to suppress background reactivity and improve enantioselectivity in photochemical reactions.


Subject(s)
Iridium , Lewis Acids , Lewis Acids/chemistry , Iridium/chemistry , Stereoisomerism , Photosensitizing Agents , Catalysis
8.
J Am Chem Soc ; 144(32): 14790-14797, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35921549

ABSTRACT

There are few enantioconvergent reactions in which racemic substrates bearing multiple stereochemical features are converted into products with high levels of diastereo- and enantiocontrol. Here, we disclose a process for the highly enantio- and diastereoselective syntheses of medium ring lactams via an intramolecular counterion-directed C-alkylation reaction. The treatment of racemic biaryl anilides that exist as a complex mixture of enantiomers and diastereoisomeric conformers by virtue of multiple axes of restricted rotation with a quinidine-derived ammonium salt under basic conditions affords medium ring lactams bearing elements of both axial and point chirality via an enolate-driven configurational relaxation process. Thermal equilibration of the syn- and anti-product diasteroisomers has demonstrated that the barriers to bowl inversion are >124 kJ mol-1. We propose that the chiral ammonium salt differentiates between a complex and rapidly equilibrating mixture of enolate and rotational isomers, ultimately leading to highly enantioselective alkylative ring closure. This dynamic and enantioconvergent process offers an operationally simple approach to the synthesis of valuable chiral medium ring lactams for which there are few catalytic and enantioselective approaches.


Subject(s)
Ammonium Compounds , Lactams , Alkylation , Carboxylic Acids , Catalysis , Stereoisomerism
10.
World J Gastrointest Pathophysiol ; 12(6): 115-133, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34877026

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) is an inflammatory disease, which presents with epigastric pain and is clinically diagnosed by amylase and lipase three times the upper limit of normal. The 2012 Atlanta classification stratifies the severity of AP as one of three risk categories namely, mild AP (MAP), moderately severe AP (MSAP), and severe AP (SAP). Challenges in stratifying AP upon diagnosis suggest that a better understanding of the underlying complex pathophysiology may be beneficial. AIM: To identify the role of the chemokine receptor 8 (CCR8), expressed by T-helper type-2 Lymphocytes and peritoneal macrophages, and its possible association to Interleukin (IL)-6 and AP stratification. METHODS: This study was a prospective case-control study. A total of 40 patients were recruited from the Chris Hani Baragwanath Academic Hospital and the Charlotte Maxeke Johannesburg Academic Hospital. Bioassays were performed on 29 patients (14 MAP, 11 MSAP, and 4 SAP) and 6 healthy controls as part of a preliminary study. A total of 12 mL of blood samples were collected at Day (D) 1, 3, 5, and 7 post epigastric pain. Using multiplex immunoassay panels, real-time polymerase chain reaction (qRT-PCR) arrays, and multicolour flow cytometry analysis, immune response-related proteins, genes, and cells were profiled respectively. GraphPad Prism™ software and fold change (FC) analysis was used to determine differences between the groups. P<0.05 was considered significant. RESULTS: The concentration of IL-6 was significantly different at D3 post epigastric pain in both the MAP group and MSAP group with P = 0.001 and P = 0.013 respectively, in a multiplex assay. When a FC of 2 was applied to identify differentially expressed genes using RT2 Profiler, CCR8 was shown to increase steadily with disease severity from MAP (1.33), MSAP (38.28) to SAP (1172.45) median FC. Further verification studies using RT-PCR showed fold change increases of CCR8 in MSAP and SAP ranging from 1000 to 1000000 times when represented as Log10, compared to healthy control respectively at D3. The findings also showed differing lymphocyte and monocyte cell frequency between the groups. With monocyte population frequency as high as 70% in MSAP at D3. CONCLUSION: The higher levels of CCR8 and IL-6 in the severe patients and immune cell differences compared to MAP and controls provide an avenue for exploring AP stratification to improve management.

11.
Ambio ; 50(5): 981-989, 2021 May.
Article in English | MEDLINE | ID: mdl-33454882

ABSTRACT

The international development community is off-track from meeting targets for alleviating global malnutrition. Meanwhile, there is growing consensus across scientific disciplines that fish plays a crucial role in food and nutrition security. However, this 'fish as food' perspective has yet to translate into policy and development funding priorities. We argue that the traditional framing of fish as a natural resource emphasizes economic development and biodiversity conservation objectives, whereas situating fish within a food systems perspective can lead to innovative policies and investments that promote nutrition-sensitive and socially equitable capture fisheries and aquaculture. This paper highlights four pillars of research needs and policy directions toward this end. Ultimately, recognizing and working to enhance the role of fish in alleviating hunger and malnutrition can provide an additional long-term development incentive, beyond revenue generation and biodiversity conservation, for governments, international development organizations, and society more broadly to invest in the sustainability of capture fisheries and aquaculture.


Subject(s)
Fisheries , Food Supply , Animals , Aquaculture , Conservation of Natural Resources , Fishes , Policy
12.
Angew Chem Int Ed Engl ; 59(51): 23020-23024, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-32856748

ABSTRACT

The [2+2] photocycloaddition is the most valuable and intensively investigated photochemical process. Here we demonstrate that irradiation of N-acryloyl heterocycles with blue LED light (440 nm) in the presence of an IrIII complex leads to efficient and high yielding fused γ-lactam formation across a range of substituted heterocycles. Quantum calculations show that the reaction proceeds via cyclization in the triplet excited state to yield a 1,4-diradical; intersystem crossing leads preferentially to the closed shell singlet zwitterion. This is geometrically restricted from undergoing recombination to yield a cyclobutane by the planarity of the amide substituent. A prototropic shift leads to the observed bicyclic products in what can be viewed as an interrupted [2+2] cycloaddition.

13.
HPB (Oxford) ; 22(8): 1128-1134, 2020 08.
Article in English | MEDLINE | ID: mdl-32565039

ABSTRACT

BACKGROUND: The extent of the COVID-19 pandemic and the resulting response has varied globally. The European and African Hepato-Pancreato-Biliary Association (E-AHPBA), the premier representative body for practicing HPB surgeons in Europe and Africa, conducted this survey to assess the impact of COVID-19 on HPB surgery. METHODS: An online survey was disseminated to all E-AHPBA members to assess the effects of the pandemic on unit capacity, management of HPB cancers, use of COVID-19 screening and other aspects of service delivery. RESULTS: Overall, 145 (25%) members responded. Most units, particularly in COVID-high countries (>100,000 cases) reported insufficient critical care capacity and reduced HPB operating sessions compared to COVID-low countries. Delayed access to cancer surgery necessitated alternatives including increased neoadjuvant chemotherapy for pancreatic cancer and colorectal liver metastases, and locoregional treatments for hepatocellular carcinoma. Other aspects of service delivery including COVID-19 screening and personal protective equipment varied between units and countries. CONCLUSION: This study demonstrates that the COVID-19 pandemic has had a profound adverse impact on the delivery of HPB cancer care across the continents of Europe and Africa. The findings illustrate the need for safe resumption of cancer surgery in a "new" normal world with screening of patients and staff for COVID-19.


Subject(s)
Betacoronavirus , Biliary Tract Neoplasms/surgery , Coronavirus Infections/complications , Digestive System Surgical Procedures/methods , Liver Neoplasms/surgery , Pancreatic Neoplasms/surgery , Pneumonia, Viral/complications , Africa/epidemiology , Biliary Tract Neoplasms/complications , COVID-19 , Coronavirus Infections/epidemiology , Cross-Sectional Studies , Delivery of Health Care/methods , Europe/epidemiology , Female , Humans , Liver Neoplasms/complications , Male , Pancreatic Neoplasms/complications , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Societies, Medical
15.
Chem Commun (Camb) ; 55(33): 4849-4852, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-30950463

ABSTRACT

We describe self-assembled monolayers of novel halogen-bonding and hydrogen-bonding foldamer receptors capable of selectively recruiting perrhenate, iodide and thiocyanate in water. Unprecedented anion sensing via impedance-derived capacitance spectroscopy enables subsequent sensitive and selective anion detection without the need for a redox probe. Importantly, the sensing of any anion should be possible using this novel electrochemical approach.

17.
J Am Chem Soc ; 141(9): 4119-4129, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30730716

ABSTRACT

A novel strategy for the recognition of anions in water using charge-neutral σ-hole halogen and chalcogen bonding acyclic hosts is demonstrated for the first time. Exploiting the intrinsic hydrophobicity of halogen and chalcogen bond donor atoms integrated into a foldamer structural molecular framework containing hydrophilic functionalities, a series of water-soluble receptors was constructed for an anion recognition investigation. Isothermal titration calorimetry (ITC) binding studies with a range of anions revealed the receptors to display very strong and selective binding of large, weakly hydrated anions such as I- and ReO4-. This is achieved through the formation of 2:1 host-guest stoichiometric complex assemblies, resulting in an encapsulated anion stabilized by cooperative, multidentate, convergent σ-hole donors, as shown by molecular dynamics simulations carried out in water. Importantly, the combination of multiple σ-hole-anion interactions and hydrophobic collapse results in I- affinities in water that exceed all known σ-hole receptors, including cationic systems (ß2 up to 1.68 × 1011 M-2). Furthermore, the anion binding affinities and selectivity trends of the first example of an all-chalcogen bonding anion receptor in pure water are compared with halogen bonding and hydrogen bonding receptor analogues. These results further advance and establish halogen and chalcogen bond donor functions as new tools for overcoming the challenging goal of anion recognition in pure water.

18.
Angew Chem Int Ed Engl ; 58(14): 4596-4600, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30779415

ABSTRACT

BINOLs are valuable and widely used building blocks, chiral ligands, and catalysts that are effective across a remarkable range of different chemical transformations. Here we demonstrate that an ammonium salt catalyzed kinetic resolution of racemic BINOLs with benzyl tosylate proceeds with s up to 46. This is a scalable and practical process that can be applied across >30 different C2 - and non-C2 -symmetric BINOLs. Implementation of this method enables the enantioselective synthesis of a wide range of BINOL derivatives with over 99:1 e.r.

19.
Angew Chem Int Ed Engl ; 58(9): 2795-2798, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30644159

ABSTRACT

Non-biaryl atropisomers are valuable in medicine, materials, and catalysis, but their enantioselective synthesis remains a challenge. Herein, a counterion-mediated O-alkylation method for the generation of atropisomeric amides with an er up to 99:1 is outlined. This dynamic kinetic resolution is enabled by the observation that the rate of racemization of atropisomeric naphthamides is significantly increased by the presence of an intramolecular O-H⋅⋅⋅NCO hydrogen bond. Upon O-alkylation of the H-bond donor, the barrier to rotation is significantly increased. Quantum calculations demonstrate that the intramolecular H-bond reduces the rotational barrier about the aryl-amide bond, stabilizing the planar transition state for racemization by approximately 40 kJ mol-1 , thereby facilitating the observed dynamic kinetic resolution.

20.
Proc Natl Acad Sci U S A ; 116(12): 5311-5318, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30126992

ABSTRACT

Coupled human and natural systems (CHANS) are complex, dynamic, interconnected systems with feedback across social and environmental dimensions. This feedback leads to formidable challenges for causal inference. Two significant challenges involve assumptions about excludability and the absence of interference. These two assumptions have been largely unexplored in the CHANS literature, but when either is violated, causal inferences from observable data are difficult to interpret. To explore their plausibility, structural knowledge of the system is requisite, as is an explicit recognition that most causal variables in CHANS affect a coupled pairing of environmental and human elements. In a large CHANS literature that evaluates marine protected areas, nearly 200 studies attempt to make causal claims, but few address the excludability assumption. To examine the relevance of interference in CHANS, we develop a stylized simulation of a marine CHANS with shocks that can represent policy interventions, ecological disturbances, and technological disasters. Human and capital mobility in CHANS is both a cause of interference, which biases inferences about causal effects, and a moderator of the causal effects themselves. No perfect solutions exist for satisfying excludability and interference assumptions in CHANS. To elucidate causal relationships in CHANS, multiple approaches will be needed for a given causal question, with the aim of identifying sources of bias in each approach and then triangulating on credible inferences. Within CHANS research, and sustainability science more generally, the path to accumulating an evidence base on causal relationships requires skills and knowledge from many disciplines and effective academic-practitioner collaborations.


Subject(s)
Ecosystem , Environment , Humans , Program Evaluation/standards , Research/legislation & jurisprudence
SELECTION OF CITATIONS
SEARCH DETAIL
...