Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Microdevices ; 25(2): 16, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37084116

ABSTRACT

This paper presents the engineering and validation of an enabling technology that facilitates new capabilities in in vitro cell models for high-throughput screening and tissue engineering applications. This is conducted through a computerized system that allows the design and deposition of high-fidelity microscale patterned coatings that selectively alter the chemical and topographical properties of cell culturing surfaces. Significantly, compared to alternative methods for microscale surface patterning, this is a digitally controlled and automated process thereby allowing scientists to rapidly create and explore an almost infinite range of cell culture patterns. This new capability is experimentally validated across six different cell lines demonstrating how the precise microscale deposition of these patterned coatings can influence spatiotemporal growth and movement of endothelial, fibroblast, neuronal and macrophage cells. To further demonstrate this platform, more complex patterns are then created and shown to guide the behavioral response of colorectal carcinoma cells.


Subject(s)
Cell Culture Techniques , Tissue Engineering , Tissue Engineering/methods , Cell Culture Techniques/methods , Cells, Cultured , Fibroblasts , Cell Line
2.
Front Cell Dev Biol ; 9: 722294, 2021.
Article in English | MEDLINE | ID: mdl-34527674

ABSTRACT

Digitally driven manufacturing technologies such as aerosol jet printing (AJP) can make a significant contribution to enabling new capabilities in the field of tissue engineering disease modeling and drug screening. AJP is an emerging non-contact and mask-less printing process which has distinct advantages over other patterning technologies as it offers versatile, high-resolution, direct-write deposition of a variety of materials on planar and non-planar surfaces. This research demonstrates the ability of AJP to print digitally controlled patterns that influence neuronal guidance. These consist of patterned poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) tracks on both glass and poly(potassium 3-sulfopropyl methacrylate) (PKSPMA) coated glass surfaces, promoting selective adhesion of SH-SY5Y neuroblastoma cells. The cell attractive patterns had a maximum height ≥0.2 µm, width and half height ≥15 µm, Ra = 3.5 nm, and RMS = 4.1. The developed biocompatible PEDOT:PSS ink was shown to promote adhesion, growth and differentiation of SH-SY5Y neuronal cells. SH-SY5Y cells cultured directly onto these features exhibited increased nuclei and neuronal alignment on both substrates. In addition, the cell adhesion to the substrate was selective when cultured onto the PKSPMA surfaces resulting in a highly organized neural pattern. This demonstrated the ability to rapidly and flexibly realize intricate and accurate cell patterns by a computer controlled process.

SELECTION OF CITATIONS
SEARCH DETAIL