Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(9): e0274606, 2022.
Article in English | MEDLINE | ID: mdl-36121820

ABSTRACT

One of the most straightforward and commonly used chemical modifications of proteins is to react surface amino groups (lysine residues) with activated esters. This chemistry has been used to generate protein-polymer conjugates, many of which are now approved therapeutics. Similar conjugates have also been generated by reacting activated ester atom transfer polymerization initiators with lysine residues to create biomacromolecular initiators for polymerization reactions. The reaction between activated esters and lysine amino groups is rapid and has been consistently described in almost every publication on the topic as a "random reaction". A random reaction implies that every accessible lysine amino group on a protein molecule is equally reactive, and as a result, that the reaction is indiscriminate. Nonetheless, the literature contradicts itself by also suggesting that some lysine amino groups are more reactive than others (as a function of pKa, surface accessibility, temperature, and local environment). If the latter assumption is correct, then the outcome of these reactions cannot be random at all, and we should be able to predict the outcome from the structure of the protein. Predicting the non-random outcome of a reaction between surface lysines and reactive esters could transform the speed at which active bioconjugates can be developed and engineered. Herein, we describe a robust integrated tool that predicts the activated ester reactivity of every lysine in a protein, thereby allowing us to calculate the non-random sequence of reaction as a function of reaction conditions. Specifically, we have predicted the intrinsic reactivity of each lysine in multiple proteins with a bromine-functionalised N-hydroxysuccinimide initiator molecule. We have also shown that the model applied to PEGylation. The rules-based analysis has been coupled together in a single Python program that can bypass tedious trial and error experiments usually needed in protein-polymer conjugate design and synthesis.


Subject(s)
Bromine , Lysine , Esters , Lysine/metabolism , Polymers/chemistry , Protein Processing, Post-Translational , Proteins/metabolism
2.
Acta Biomater ; 124: 270-281, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33529769

ABSTRACT

Biotherapeutics have achieved global economic success due to their high specificity towards their drug targets, providing exceptional safety and efficiency. The ongoing shift away from small molecule drugs towards biotherapeutics heightens the need to further improve the pharmacokinetics of these biological drugs. Three pervasive obstacles that limit the therapeutic capacity of biotherapeutics are proteolytic degradation, circulating half-life, and the development of anti-drug antibodies. These challenges can culminate in limited efficiency and consequently warrant the need for higher drug doses and more frequent administration. We have explored the coupling of biotherapeutics to long-lived and biocompatible red blood cells (RBCs) to address limited pharmacokinetics. Butyrylcholinesterase (BChE), for example, provides prophylactic protection against organophosphate nerve agents (OPNAs), yet the short circulation life of the drug requires extraordinary doses. Herein, we report the rapid and tunable chemical engineering of BChE to RBC membranes to create a cell-based delivery system that retains the enzyme activity and enhances stability. In a three-step process that first pre-modifies BChE with a cell-reactive polymer chain, primes the cells for engineering, and then grafts the conjugates to the cells, we attached over 2 million BChE molecules to the surface of each RBC without diminishing the bioscavenging capacity of the enzyme. Critically, this membrane-engineering approach was cell-tolerated with minimal hemolysis observed. These results provide strong evidence for the ability of engineered RBCs to serve as an enhanced biotherapeutic delivery vehicle. STATEMENT OF SIGNIFICANCE: Organophosphate nerve agents (OPNAs) are one of the most lethal forms of chemical warfare. After exposure to OPNAs, a patient is given life-saving therapeutics, such as atropine and oxime. However, these drugs are limited, and the patient can still suffer from irreparable injuries. Given the toxicity of OPNAs, access to a prophylactic is vital. We have created an enhanced delivery system for prophylactic butyrylcholinesterase (BChE) by engineering this biotherapeutic to the red blood cell (RBC) surface. In three simple steps that first pre-modifies BChE with a cell-reactive polymer, primes the cells for engineering, and then grafts the conjugates to the cells, we attached over 2 million BChE molecules to a single RBC while retaining the enzyme's activity and enhancing its stability.


Subject(s)
Organophosphates , Pharmaceutical Preparations , Butyrylcholinesterase , Erythrocytes , Humans , Oximes
3.
Soft Matter ; 17(12): 3358-3366, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33630985

ABSTRACT

To establish how the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of lipids to an air/water interface, we used X-ray diffuse scattering (XDS) to determine an order parameter of the lipid chains (Sxray) and the bending modulus of the lipid bilayers (KC). Samples contained different amounts of the proteins with two sets of lipids. Dioleoylphosphatidylcholine (DOPC) provided a simple, well characterized model system. The nonpolar and phospholipids (N&PL) from extracted calf surfactant provided the biological mix of lipids. For both systems, the proteins produced changes in Sxray that correlated well with KC. The dose-response to the proteins, however, differed. Small amounts of protein generated large decreases in Sxray and KC for DOPC that progressed monotonically. The changes for the surfactant lipids were erratic. Our studies then tested whether the proteins produced correlated effects on adsorption. Experiments measured the initial fall in surface tension during adsorption to a constant surface area, and then expansion of the interface during adsorption at a constant surface tension of 40 mN m-1. The proteins produced a sigmoidal increase in the rate of adsorption at 40 mN m-1 for both lipids. The results correlated poorly with the changes in Sxray and KC in both cases. Disordering of the lipid chains produced by the proteins, and the softening of the bilayers, fail to explain how the proteins promote adsorption of lipid vesicles.


Subject(s)
Pulmonary Surfactants , Adsorption , Elasticity , Hydrophobic and Hydrophilic Interactions , Phospholipids , Surface-Active Agents
4.
Biomacromolecules ; 21(9): 3867-3877, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32786529

ABSTRACT

Organophosphorus nerve agents (OPNAs), used in chemical warfare, irreversibly inhibit essential cholinesterases (ChEs) in the cholinergic neurotransmission system. Several potent nucleophilic oximes have been approved for the treatment of acute poisoning by OPNAs, but they are rapidly cleared from blood circulation. Butyrylcholinesterase (BChE) stoichiometrically binds nerve agents, but because the molecular weight of a nerve agent is about 500-fold less than the enzyme, the bioscavenger has had limited utility. We synthesized BChE-polymer-oxime conjugates using atom transfer radical polymerization (ATRP) and azide-alkyne "click" chemistry. The activity of the BChE-polymer-oxime conjugates was dependent on the degree of oxime loading within the copolymer side chains. The covalent modification of oxime-containing copolymers prolonged the activity of BChE in the presence of the VX- and cyclosarin-fluorogenic analogues EMP-MeCyC and CMP-MeCyC, respectively. After complete inactivation by VX and cyclosarin fluorogenic analogues, the conjugates demonstrated efficient self-reactivation of up to 80% within 3-6 h. Repeated inhibition and high-level self-reactivation assays revealed that the BChE-polymer-oxime conjugates were excellent reactivators of OPNA-inhibited BChE. Recurring self-reactivation of BChE-polymer-oxime conjugates following repeated BChE inhibition by fluorogenic OPNAs (Flu-OPNAs) opens the door to developing the next generation of nerve agent "catalytic" bioscavengers.


Subject(s)
Butyrylcholinesterase , Nerve Agents , Cholinesterase Inhibitors , Organophosphorus Compounds , Oximes , Polymers
5.
Acta Biomater ; 101: 422-435, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31669698

ABSTRACT

The global and economic success of immunoglobulin-based therapeutics in treating a wide range of diseases has heightened the need to further enhance their efficacy and lifetime while diminishing deleterious side effects. The three most ubiquitous challenges of therapeutic immunoglobulin delivery are their relatively short lifetimes in vivo, the immunologic consequences of soluble antibody-antigen complexes, and the emergence of anti-drug antibodies. We describe the rapid, cell-tolerated chemical engineering of the erythrocyte membrane in order to display any antibody, our model system being the display of anti-Tumor Necrosis Factor (anti-TNFα), on the surface of long-lived red blood cells (RBCs) while masking the antibody's Fc region. We developed four synthetic approaches to generate RBC-Staphylococcal protein A (RBC-SpA) complexes: amino group targeting through N-hydrosuccinidyl ester-functionalized homobifunctional poly(ethylene glycol) (NHS-PEG-NHS), direct thiol group targeting using heterobifunctional NHS-PEG-maleimide (NHS-PEG-MAL), converted thiol targeting using heterobifunctional NHS-PEG-MAL, and click chemistry using heterobifunctional NHS-PEG-azido (NHS-PEG-N3) and NHS-PEG-alkyne (NHS-PEG-alk). The RBC-PEG-SpA complexes were formed within minutes, followed by the attachment of over 105 antibodies per RBC to the accessible RBC-bound SpA via Fc-Protein A coupling. The RBC-PEG-SpA-antibody arrays were shown to be stable for more than 60 days in PBS and for more than 42 days in serum containing buffer. RBC-PEG-SpA-antibody complexes were shown to remove TNFα from physiological buffer and had similar mechanical properties to unmodified RBCs. Out of the four approaches, the converted thiol method provided the most controlled chemistry and construct stability. We are now ideally positioned to determine the long-term in vivo efficacy of chemically membrane-engineered RBCs to remove antigens, like TNFα, from serum. STATEMENT OF SIGNIFICANCE: The global and economic success of immunoglobulin-based therapeutics in treating a wide range of diseases has heightened the need to further enhance their efficacy and lifetime while diminishing deleterious side effects. The three most ubiquitous challenges of therapeutic immunoglobulin delivery are their relatively short lifetimes in vivo, the immunologic consequences of soluble antibody-antigen complexes, and the emergence of anti-drug antibodies. We describe the rapid, cell-tolerated chemical engineering of the erythrocyte membrane to display any antibody, our model system being the display of anti-Tumor Necrosis Factor (anti-TNFα), on the surface of long-lived red blood cells (RBCs) while masking the antibody's Fc region. Conversion of RBCs into therapeutic delivery vehicles, we argue, would enhance the circulation life of immunoglobulin-based therapeutics while simultaneously evading deleterious immune response.


Subject(s)
Drug Carriers/chemistry , Erythrocytes/metabolism , Immunoglobulins/therapeutic use , Antibodies/metabolism , Antigens/metabolism , Click Chemistry , Erythrocyte Membrane/metabolism , Humans , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Protein Binding , Staphylococcal Protein A/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL